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Preface 
 

This report aims to summarize some issues regarding the stability of a dam bank made up of 

glacial marine sediments. The report consists of an introduction and of three appended 

reports written by Stig Bernander arguing for the need of up-to-date analyses based on 

possible progressive failure formation in the proposed natural dam bank at Muskrat Falls in 

Churchill River Valley, Labrador/Newfoundland, Canada. 

Mölndal and Luleå in July 2017 

Stig Bernander        Lennart Elfgren   

 

In this revised version some clarifications and editorial revisions have been made. Moreover 

Stig Bernander has written a summing up of North Spur stability issues, which has been 

added as a last appendix. 

Mölndal and Luleå in November 2017 

Stig Bernander        Lennart Elfgren 

 

 

Abstract 
 

The differences in landslide analysis between the classic limit equilibrium method (LEM) and   

a progressive failure procedure is outlined. In LEM the soils are presumed to be fully plastic, 

whereas in the progressive failure approach the joint effect of strain-softening material 

properties and deformations in the soil mass are considered.  

The risk of failure in the North Spur ridge due to the dam impoundment at Muskrat Falls in 

the Churchill River Valley (Labrador/Newfoundland) is investigated. An important issue in this 

context is e.g. that sloping failure surfaces near the cut-off wall (COW) are bound to be much 

more critical than the horizontal failure planes, which have hitherto been considered 

according to Nalcor/SNC-Lavalin Engineering Reports. 

Results from progressive failure analyses have now been obtained, applying plausible 

deformation-softening material properties to the soils in the ridge. These results, which are 

presented at the end of this report, render unsatisfactory safety factors – i.e. lower than 0.5, 

thus indicating potential risks of failure when the water surface is raised to the proposed 

levels.   

Three reports and a summing up are appended, where Dr Bernander strongly emphasizes 

the need of stability evaluations based on proper progressive failure analysis  i.e. using soil 

properties based on tests that are not carried out under fully drained conditions.  

Measures to reducing the detrimental effects of high in-situ porosity are also proposed. 
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Notations  
 

Upper case Roman letters (in alphabetical order) 

𝐸 = Total earth pressure = 𝐸0 + N  (kN/m) 

𝐸0  In-situ earth pressure (kN/m) 

𝐸𝑝𝑅𝑎𝑛𝑘𝑖𝑛𝑒  Critical down-slope earth pressure resistance at passive Rankine failure (kN/m) 

𝐹𝑠
𝐼  Safety factor for local failure (𝑁𝑐𝑟  /𝑁𝑞) 

𝐹𝑠
𝐼𝐼  Safety factor for global failure (𝐸𝑝𝑅𝑎𝑛𝑘𝑖𝑛𝑒 /𝐸) 

𝐺   Secant modulus in shear (GPa) 

𝐻𝑥𝑖→𝑥𝑖+1
  Height of element 𝑖 → 𝑖 + 1 (m) 

𝐾0  Ratio between minor and major principal stresses 

𝐾𝑝  Rankine coefficient for lateral passive earth resistance  

𝐿𝑐𝑟 Limit length of mobilization of shear stress at 𝑁𝑐𝑟 (m) 

𝑁𝑐𝑟 Critical load effect initiating local slope failure (kN/m) 

𝑁𝑞  Additional load in the direction of the failure plane (kN/m) 

𝑁   Earth pressure increment due to additional load (kN/m) 

Vp   Volume of pores 

Vs  : Volume of solids 

 

Lower case Roman letters (in alphabetical order) 

𝑏    Width of element considered (m) 

𝑠, 𝑠𝑢 Un-drained peak shear strength (also sometimes denoted S, Su, c, cu) (kPa) 

𝑠𝑅   Residual shear resistance (also sometimes denoted SR, cR) (kPa) 

eVp / Vs:  = void ratio 

𝑔    Gravity (9,81 m/s2) 

m   mass (kg) 

n = Vp / ( Vp: + Vs:)  =  porosity 

𝑞    Additional vertical load (kN/m2) 

w   water content (= e∙w /s) 
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Greek letters (in alphabetical order) 

𝛽     Slope gradient at coordinate x (°) 

𝛾(𝑥, 𝑧)  Deviator shear strain at point 𝑥, 𝑧 

𝛾𝑒𝑙  Deviator strain at elastic limit  

𝛾𝑓   Deviator strain for shear stress peak value 

    Load from weight of soil g  (kN/m3) 

𝛿𝑐𝑟  Critical displacement in terms of axial deformation (m) 

δN   Down-slope displacement in terms of axial deformation generated by forces N (m) 

δ𝜏   Down-slope displacement in terms of deviator deformation (m) 

𝜌   Soil density (kg/dm3) 

𝜐    Poisson coefficient 

𝜏𝑒𝑙 Shear stress at elastic limit (kPa) 

𝜏, 𝜏(𝑥, 𝑧)  Total shear stress in section 𝑥 at elevation 𝑧 (kPa)  

∆𝜏𝑥𝑖→𝑥𝑖+1
  Shear stress increment from step 𝑖 to 𝑖 + 1 (kPa) 

𝜏0(𝑥, 𝑧)  In situ shear stress in section 𝑥 at elevation 𝑧 (kPa) 

 

Masses, Volumes and Ratios 

 
 
Definitions 

 
Void ratio e = Vp/Vs 

 

Porosity n = Vp /(Vp + Vs) 

 
Water content w = mw / ms = e∙ρw/ρs 

Clay has a particle size less than 0,002 mm; silt has a particle size less than 0,63 mm and 

sand has a particle size less than 2 mm. 
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Figure 1.1.  Map of the Northern Hemisphere with Churchill River in Canada and Luleå in 
Sweden marked with red circles, 

1. Glacial sediments 

The location of the studied riverbank at Muskrat Falls in Churchill River Valley is given in 

Figure 1.1. A view of the falls and the North Spur is given in Figure 1.2. 

The stability conditions in natural slopes are closely related to their geological and 

hydrological history. Slopes in the northern hemisphere of clay (particle size less than 0,002 

mm) and silt (particle size less than 0,63 mm) are made up of glacial and post-glacial marine 

deposits that emerged from the regressing sea after the last glacial period some ten 

thousand years ago. Hence, the sediments deposited at the end of this period in sea and 

fjords are now found in valleys and plains above present sea level, forming deep layers of 

soft and silty clays, silts and sands.  

As the ground gradually rose above the sea level, the strength properties of the soils and the 

earth pressures in the slopes have, by consolidation and ongoing creep movement, slowly 

accommodated over time to increasing loads due to changing hydrological conditions. Apart 

from the retreating free water level, this metamorphosis consists of dry crust formation, 

increased downhill seepage pressures, falling ground water table and the due increase of 

effective stresses in the soil mass. Chemical deterioration may also have affected soil 

strength and sensitivity,  

The properties of different soil layers may vary considerably from loosely layered sands and 

clayey silts to over consolidated clays, see Bernander (2011) and Appendix I. 

 



9 
 

 

Figure 1.2.  Muskrat Falls with the North Spur. The Spur ends with a massive granite rock 
close to the falls, the Rock Knoll. Section A denotes a studied part of the ridge. Dury (2017). 

2. Soil properties 

Glacial soils (e.g. quick lean clayey sands and porous silty sands) may be extremely 

sensitive and even liquefy when remoulded. In tests the clays exhibit a peak strength, after 

which the soil structure may collapse leading to a corresponding reduction of shear 

resistance. 

A typical deviatory stress/shear strain relationship for a sensitive deformation-softening clay 

is shown in Figure 2.1, Bernander et al. (1981  2016). For different deformation rates the 

relationship may vary widely. The ratio sR /s between the residual stress sR and the maximum 

stresses s may vary considerably for different clays and sensitive soils. In the figure, the case 

with an ideal plastic behavior is indicated with a dotted blue line. Full plasticity along lengthy 

failure planes is taken for granted in the classic simplified limit equilibrium method (LEM) that 

is often used for slope stability analysis.  

However, there may be considerable deformation-softening – i.e. even liquefaction – not only 

in silty clays but also in silty sandy soils, where the inter-particle friction plays a greater role 

than the cohesion, Terzaghi et al (1996). 

It should again be pointed out that the soil properties may vary considerably. The 

characteristics of fat clays in eastern and central Canada generally differ considerably from 

those of the lean silty clays and clayey silty sands in and around Churchill River Valley. 

The soil layers in the studied North Spur ridge at Muskrat Falls are illustrated in Figure 2.2. 

They are described in Leahy (2015) and Ceballos (2016) and are further discussed in 

Appendix I.   

The upper sand layer consists mainly of dense grey fine to medium sand with low fines 

content. The layers underneath constitute a heterogeneous mix of clays, porous silts and 

sands from marine and estuarine deposits named the Stratified Drift. The lower clay layer is 

located below the stratified drift and is mainly clay of low to medium plasticity. In the studied 

section A in Figure 1.2, the soil layers are slightly inclined - sloping downwards about 4/100 

from the upstream side of the ridge towards the downstream side.  
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Figure 2.1.  Stress-strain  and stress-deformation  relationships in a typical 
deformation softening clay. The full red line indicates a deformation-softening behavior while 
the blue dotted line indicates presumed ideal plastic behavior. Stage I is the condition before 

 reaches max = s. Stage II forms the subsequent deformation-softening development with a 

final residual shear strength of sR. The ratio sR /s is a measure of the sensitivity of the soil.   

 

 

Figure 2.2.  Different soil layers in the studied North Spur ridge at Muskrat Falls as shown in 
Section A of Figure 1.2, Dury (2017).   

 

In Table 2.1, some values are given from tests on two of the layers in the North Ridge, the 

upper silty clay layers in the stratified drift and the lower marine clay, respectively, Leahy 

(2015). It may be noted that the remolded undrained shear strength sR (denoted Sur in the 

table) varies considerably, adopting values between, 2  60 and 8  96 kPa respectively. 

These values correspond to the value sR ≈ 17 kPa in Figure 2.1. Further, in Table 2.1, the 

sensitivity St is defined as the ratio of the intact undrained shear strength denoted Su to the 

remolded undrained shear stress denoted Sur , i.e. the sensitivity is  St = Su/ Sur  with values 

varying between 1  36 and 2  11 respectively. Possible stress-strain diagrams for the 

upper silty clay layers are illustrated in Figure 2.3. As no deformation properties are given in 

Leahy (2015) the stiffness values are just assumed.  
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Table 2.1 shows that there are soil layers – both in the Upper Silty Clay and in the Lower 

Marine Clay formation -  with marked risk of liquefaction or massive loss of residual shear 

resistance – and in which critical failure surfaces may develop. (Confer Appendix II and III).  

Table 2.1. Material Properties for Upper Silty Clay Layers and Lower Marine Clay Layer at 
North Ridge, Leahy (2015)  

Property 
Upper Silty Clay  Lower Marine Clay 

General 
range 

Average 
No. of 
tests 

General 
Range 

Average 
No. of 
tests 

Percent finer than 2 microns 35 - 45 - 19 15 - 35 - - 

Water content, w % 17 - 43 31 199 17 - 45 29 201 

Liquid limit, LL % 17 - 43 30 168 22 - 48 37 123 

Plastic limit, PL% 13 - 22 19 168 13 - 27 21 123 

Plasticity index PI= LL-PL%  2 - 22 11 168 7 - 25 16 123 

Liquidity index. LI =               
(w-PL)/(LL-PL) 

0,6 - 2,8 1,3 168 0,1 - 2 0,6 123 

Intact undrained shear strength, 
Su, kPa 

35 - 135 - - 53 - 200 - - 

Remolded undrained shear 
strength, Sur, kPa 

2 - 60 - - 8 - 96 - - 

Sensitivity, in situ, St= Su/Sur 1 - 36 10 43 2 - 11 4 35 

Large strain friction angle ’cv,
o
 30 - 32 - - 33 - - 

Effective cohesion, c’, kPa 0 - 10 - - 6 - - 

Salt content, g/l 0,8 - 1,5  - 8 - 22 - 8 

Unit weight,  , kN/m
3
 18,4 - 19,7 - 11 19,2 -19,5 - 3 

Hydraulic conductivity, k, m/s 10
-7

 –  10
-9

 - - 10
-7

 – 10
-9

 - - 

Notes: The Liquid limit, LL, and the Plastic limit, PL, are measures of the water content in a 
fine grained soil. They were originally defined by Albert Atterberg (1846-1916) and modified 
by Casagrande (1902-1981), see Terzaghi et al. (1996).  

 

 

Figure 2.3. Possible varieties in stress-strain relationships for the Upper Silty Clays in the 
North Spur based on Table 2.1 from Leahy (2015). As no deformation properties are given, 
the inclinations of the curves are guessed. 
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3. Failure risk  

Existing slopes are basically stable, as long as they remain undisturbed by human activity 

and unaffected by significant intrinsic deterioration phenomena.  

However, deterioration of shear strength and especially increasing sensitivity in the uphill 

portion of a long slope – e.g. because of long-time upward ground water seepage – is prone 

to make the entire slope acutely vulnerable to progressive failure. This is frequently a 

precondition in Canadian and Scandinavian landslides, many of which have been triggered 

by documented – yet seemingly trivial – human interference.   

Hence, in long natural slopes of soft sensitive clays, the real slide hazard cannot be defined 

in the conventional way by the principle of plastic equilibrium. Results of analyses 

considering deformation and deformation-softening clearly indicate that the true degree of 

safety can only be correctly assessed by investigating the response in terms of progressive 

failure – based on clearly defined disturbance conditions, Bernander (2011). 

A traditional prediction of failure in a long slope is shown in Figure 3.1. As long as the mean 

shear stress  in a possible failure surface is smaller than the maximum shear capacity s the 

slope is regarded as being safe. However, to be quite safe, i.e. in terms of progressive 

failure, the applied total shear stress (i.e. Δ(Nq) +0) must not exceed the residual strength 

sR in the triggering phase of a landslide. Confer Figure 2.1 and 2.3. 

 

Figure 3.1. Slope analysis. For a density g = 18 kN/m3, a height H = 40 m and a slope with 

tan = 0,04 we obtain  = g∙H∙cos∙sin = 18∙40∙0,0399 = 26,7 kPa,  which together with a 
rising water pressure may occasionally be higher than the maximum shear stress s and for 
most of the time higher than the residual shear stress sR, compare Figure 2.1, 2.3 and Table 
2.1 with values of sR (Sur in Table 2.1) as low as 2 and 8 kPa. 

 

Slides retrogressing upwards, i.e. spreads and flow-slides, have been studied in Canada by 

e.g. Quinn (2009) and Locat et al. (2011, 2013, 2015). Such an investigation has also been 

done for the North Spur, Leahy (2015), Ceballos (2016). The results have initiated 

stabilization work on the slopes of the North Spur, see Figure 3.2, and cut-off walls (COW) 

are constructed to prevent water seepage through the slope.  

Yet, vitally, forward and downhill progressive landslide development due to the dam 

impoundment pressure on the soils behind the cut-off-wall, (the COW), have only, as far as is 

known, been studied presuming horizontal failure surfaces, Leahy (2015). 
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Figure 3.2. Stabilization work carried out to mitigate retrogressive upward slides, Leahy 
(2015), Caballos (2016). 

 

4. Progressive Failure Analysis 

In the progressive failure approach, the joint effect of strain-softening material properties and 

the simultaneous deformations due to additional loading in the soil mass are considered.  

A critical condition in this context arises if the shear stresses generated by the rising water 

level due to the impoundment exceeds the residual shear resistance of the soils just 

downstream of the COW. 

Another important issue is that a sloping failure surface near the cut-off wall (COW) is bound 

to be much more critical than the horizontal failure planes, which have been considered 

according to the Nalcor/SNC-Lavalin Engineering Reports, Leahy (2015), Caballos (2016). 

Results from progressive failure analyses have now been obtained, applying plausible 

deformation-softening material properties to the soils in the ridge. The safety factors, which 

are presented at the end of this report, are unsatisfactory – i.e. being lower than 0.5 and thus 

indicating potential risks of failure when the water surface is raised to the intended levels. 

The case is illustrated in Figures 4.1 to 4.4. The load increases with Nw when the water level 

is raised with H = 22 m from +17 m to +39 m:  

Nw = 0,5∙w ∙H2 
= 0,5 ∙10 ∙222 kN/m = 2420 kN/m 

Hence, when the hydraulic pressure load Nw gradually increases, additional shear stresses 

will develop along possibly sloping slip surfaces. The stresses will initially be highest close to 
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the cut-off wall but may, approaching and passing the peak stress, fall below the residual 

resistance, thus entering a virtually dynamic phase.  Thus, even presuming a gently sloping 

failure plane – a total landslide failure can be released.  

The shear stresses (can be calculated using the progressive failure analysis 

developed by S. Bernander (1981  2017). The calculations are then based on different 

assumptions regarding material properties and failure plane geometry. This will be further 

commented on in section 5. 

In Appendices I-III, arguments are given for the need of up-to-date progressive failure 

analyses of the stability of the proposed dam bank at Muskrat Falls. Importantly, the effects 

of the crucially decisive relationship between the current porosity and the critical porosity of a 

water saturated soil layer is discussed. 

The stabilizing works on the shores that are in progress may counteract retrogressive 

spreads and upwards slides but, according to the analyses made, the central core of the 

ridge may still be susceptible to landslide failure. The highly varying properties of water 

saturated soil layers in the North Spur constitute a definite risk of potential failure.   

Conclusion: the soils behind and near the COW will be subject to an immense additional 

load. The peak shear strength is here bound to be exceeded, and the related large deviatory 

deformations may, acting along a sloping failure surface, very likely trigger a progressive 

failure development resulting in a global landslide disaster.  

Analyses by Robin Dury (2017) and Stig Bernander et al. (2017) have recently been carried 

out showing that the issue ought to be thoroughly investigated. Cf Appendix IV.  

Only when using the most favourable material properties (i.e.su = 135 kPa & su/sR < 4) in 

Table 2.1, the calculations indicate that the ridge may stay stable. However, for material 

properties in the lower range in Table 2.1 and Figure 2.3, the critical load Ncrit will be 

significantly lower than the applied load Nw, and a failure will occur under a wide range of 

circumstances presumed. 

Applying the material properties suggested by Leahy et al. (2015, 2017), see Table 2.1, Dury 

obtained that the critical load-carrying capacity Ncrit is less than 1000 kN/m whereas a rise of 

the water level with 22 m will, as indicated above, give an increased load of Nq = Nw = 2420 

kN/m. This is more than twice of what the ridge may stand under the conditions assumed. 

Two analyses using Bernander’s original spreadsheet are enclosed as Appendix IV, also 

showing low safety factors, similar those derived from the calculations by Dury (2017).  

For a case with an in situ shear stress o = 21,1 kPa and with material properties s = 60 kPa, 

sR = 12 kPa,  s/sR = 60/12 = 5 he obtains  Ncr = 866 kN/m  and a safety factor  F = Ncr / Nw = 

866 / 2420 =  0,357 < 1. 

In another case with a higher in situ shear stress o = 41,1 kPa and with slightly better 

material properties s = 70 kPa, sR = 14 kPa, s/sR = 70/14 = 5  he obtains  Ncr = 521 kN/m   

and a safety factor F = Ncr / Nw = 521 / 2420 = 0,215 < 1. 

 

More material tests are necessary to establish the real deformation properties of the soils in 

the ridge. Stabilization work (e.g. compaction) may be needed to eliminate landslide risk.  
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The issue is treated in Appendix III, Section 5.8 and a procedure is proposed on how to 

check the material properties and how to compact the soil making it less prone to 

liquefaction. 

 

Figure 4.1. Schematic drawing of a section through the dam. When the water level is raised   
22 m, from +17 m to +39 m, a force Nw starts to act on the cut-off wall. The question is if the 

resulting shear resistance  - along a possible slip surface suffices to resist the effects of 

the hydraulic force Nw with an adequate value of the safety factor. Here, o  denotes the in-
situ prior to impoundment. 

The lower left figure illustrates the material properties of the soil based on a shear 

stress/strain () diagram with a maximum shear stress s and a residual softened shear 
stress sR. The dotted line indicates the classic ideal plastic (LEM) assumption of no strain-
softening reduction of the shear strength. When the force Nw starts to act on the cut-off wall, 

the soil behind the wall is deformed () and shear stresses ( ) will be growing according to 
the stress-strain diagram. When the shear stresses reach and pass the maximum value s the 
soil material softens, and the resistance is finally being reduced to the residual value sR  close 
to the wall. 

The maximum value the wall may carry is Ncrit = ∫(o )dx, and this is illustrated in the lower 
right figure. For the slope to remain stable, Ncrit must be at least as equal to Nw. Calculating 
Ncrit for varying material properties is the main objective of the stability analysis. 

If unrealistic ideal plastic properties are assumed (green dotted line), there will obviously in 
many cases, falsely, be no apparent stability problem. 

. 
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Figure 4.2. Muskrat Falls Hydro Facilities with the North Spur to the right, SNC Lavalin 
(2017). http://muskratfalls.nalcorenergy.com/wp-content/uploads/2017/01/North-Spur-
Information-Session-Presentation__Jan-2017_Website-posting.pdf 

 

 

 

 

 

Figure 4.3. Section of the North Spur and location of the assumed failure planes, one 
horizontal and one inclined in the lower of the two silty clay layers and one curved in the 
lower clay layer. Dury (2017). 

 

http://muskratfalls.nalcorenergy.com/wp-content/uploads/2017/01/North-Spur-Information-Session-Presentation__Jan-2017_Website-posting.pdf
http://muskratfalls.nalcorenergy.com/wp-content/uploads/2017/01/North-Spur-Information-Session-Presentation__Jan-2017_Website-posting.pdf
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Figure 4.4. The North Ridge during work designed to stabilize the riverbanks, SNC Lavalin 
(2017). 

 

Figure 4.5. Stabilization of the downstream riverbank, August 2016, 
https://muskratfalls.nalcorenergy.com/newsroom/photo-video-gallery/muskrat-falls-
construction-august-2016/ 

5. Different Phases in a Progressive Failure 

A method for progressive failure analysis has been developed by Stig Bernander et al. (1978 

 2016). When an additional load N is entered in a slope it is kept in equilibrium by 

additional shear stresses see Figure 5.1.The shear stresses have their highest values 

close to the location of the forceN and abate further downslope. After the shear stresses  

have reached the maximum value s, they abate, see Figure 2.1, and the shear resistance 

further downslope must be engaged to equilibrate N. The mechanism can be studied with a 

finite difference method, where local downhill deformations N caused by normal forces N 

are maintained compatible with the deviatory shear deformations  above  and when 

applicable also below the potential failure surface, see Figure 5.1.  
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Figure 5.1. Principle of finite difference method (FDM) where deformations N due to the 

normal forces N are kept compatible with deformations  caused by shear stresses 

The in-situ pressure Eo may vary widely along the slope.  

The failure process can be divided into five phases and six moments a-e, see a simplified 

idealised example in Figure 5.2, Bernander et al. (1984  2016) and Dury (2017).  

Phase 1.The in-situ stress in this exemplification is 0 = 20,8 kPa. The slope has an 

inclination of 6,5/100 (corresponding to an angle  = 3,287o) to the left but turns horizontal 

further to the right, (Moment a) 

Phase 2:  A load q is applied giving  = s = c = 30kPa. The shear stresses can be integrated 

to the force Nq  =189 kN/m for an influence length Lb  = 85,5m. (Moment b) 

End of Phase 2 and start of Phase 3: The shear stress has decreased to  = 𝜏0= 20,8 kPa 

at the point of application of Nq (and q). The shear stresses can be integrated to Nq,crit =  231 

kN/m for Lcritical = 94,3 m. This is the maximum additional load the slope can sustain without a 

local failure being triggered. The safety factor against a local failure, possibly triggering a 

progressive landslide, will thus be Fs  = Ncr / Nq. (Moment c) 

Phase 3 continued: If Nq exceeds Ncr (i.e. for Fs < 1), an unstable dynamic phase is 

released. In the example the residual value is reduced to sR = cR = 15 kPa and the maximum 

load that can possibly be resisted is reduced to N = 215 kN/m for an influence length of Ld  = 

99,7 mm. (Moment d). 

The negative shear stresses may balance the positive so that N is 0 at the point of 

application. Unbalanced uphill loads are dynamically transmitted further downslope until a 

new condition of equilibrium may build up due growing passive earth pressure resistance in 

less sloping ground. (Moment e). 

End of Phase 3, Phase 4 (& 5): The in situ stresses   decrease from L = 150 m where, in 

this case, the ground becomes horizontal. The additional earth pressure N is now caused by 

the weight of the totally sliding soil mass, i.e. N = LHg∙sinminus the effects of the residual 

shear stress sR =cR, which is likely to be strongly reduced due fast slip in the failure surface. 

In less sloping ground (which in the current case is horizontal) the downhill active force may, 

permanently or “temporarily“, be balanced by developing passive earth pressure. Thus, if the 

active force (E0 + N)max remains less than the maximum passive resistance Ep   as in the 
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currently studied casethe masses will stop moving, i.e. only resulting in a minor 

displacements. Yet, the failure plane tends to develop far under the non-sloping ground 

before equilibrium is reached. (Moment f). 

However, if on the other hand (E0 + N)max exceeds the passive resistance Ep,  a collapse will 

occur. This condition is named Phase 5 and constitutes what we actually understand as 

being a ‘landslide’.    

 

 

 

Figure 5.2. Five phases 1-5, and six moments a-f  in a Progressive Failure Analysis of an 

idealised slope with an inclined surface, Bernander et al. (2011, 2016), Dury (2017). Note 

that the scale in the diagram for moment (f) is different from the scales moments (a-e.) 

 
 
The safety factor for a fully developed global failure will be Fs  = Ep /(Eo +N).  

The total earth pressure E = E0 + N   for the different moments are given in Figure 5.3.  

In the North Spur case, final failure occurs at end of Phase 2, when dynamic Phase 3 is 

initiated.  
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In the North Spur, there is namely no possibility for a second stage of equilibrium once 

progressive failure has been triggered along a sloping failure plane. The eastern slope of the 

ridge ends in a 70 m deep whirlpool downstream of Muskrat Falls.  

The global safety factor Fs is thus not relevant in the North Spur case, where only the safety 

factor Fs for a triggering local failure near the COW (at the end of Phase 2) is of any 

importance. 

Figure 5.3. The total earth pressure E = E0 + N as function of the deformation  at the point 
of application of q and N during the moments a – e. Bernander et al. (2016). 

The principal features of progressive failure analysis are also treated in e.g. Quinn (2009), 

Gylland (2015), Locat et al. (2011, 2013, 2015), Wang and Hawlader (2017) and in the 

workshop proceeding L’Heureux et al. (2013) and Thakur et al. (2017). 

6. Conclusions

Progressive failure analyses have been performed according to a finite difference method 

developed by Stig Bernander (1981 2017). The development of a simplified spreadsheet 

by Robin Dury (2017) has allowed getting numerical results for a great number of studies, 

based on a wide range of data assumptions.  

For the assumed material properties and geometries of failure, the critical load-carrying 

capacity for the North Ridge dam at Muskrat Falls is below 1000 kN/m whereas a rise of the 

water level with 22 m will give an increased load of Nq = 0,5 w Hd
2 = 0,5∙10∙222 = 2420 kN/m.

This is more than twice of what the ridge may stand with the assumed properties. 

More material tests are necessary to establish the true deformation properties of the soil in 

the ridge, and stabilization work may be needed to eliminate the risk for a landslide. One 

method is to compact the sensitive soil layers to making them less prone to liquefaction. 
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On Specific questions regarding the formation of the Churchill River 
Valley and Comments on stability issues related to the North Spur. 

                                                       Executive summary. 
 

 

The intent of this report is to explain the extraordinary features of the Churchill River 
Valley, and to comment on North Spur stability regarding future impoundment.  
   

The soil properties related to lean clay formations in the Churchill River Valley have a 
significant impact on the assessment of slope stability and the factors of safety related to the 
same. The North Spur, in its present state, has numerous large landslide scars, of which some 
are due to recent landslide events indicating that erosion and land-sliding – like in the rest of 
the valley – is an on-going geological process.  

 

This report explains the extraordinary features of the Churchill River Valley and includes 

comments on the North Spur stability in respect of the future impoundment. 
 

The width of the Churchill River bed, upstream 
and downstream of Muskrat Falls, differs in an exceptional 
way from normal riverbed formations.  Along a stretch of 
at least some 30 km, the Churchill River Valley, normally 
has a width of about 1 km. Yet, it may locally vary from a 
minimum width of 600 m up to a maximum of 1500 m.  
Except for an area immediately downstream of Muskrat 
Falls, the riverbed is notably shallow. Even in places, 
where the water current was observed as being 
significant, the water depth was only about 0,4 m.  

The exceptional depth of the riverbed immediately downstream of Muskrat Falls, of 
about 70 metres is due to the presence of a ‘whirlpool’ where the water current is so strong 
that sedimentation of the eroded marine sediments originating from the upper Churchill Valley 
cannot take place.  

The contention of this document does not imply that the North Spur dam containment 
is bound to fail. Yet, considering the enormous threat to populated areas that would result from 
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a breakage in the North Spur ridge, the possibility of such an event must no matter what be 
shown to be non-existent. 

Modern research requires that the stability analysis of long slopes with sensitive clay 
must carefully take the risk of ‘brittle slope failure’ into consideration. As the impoundment 
represents a gigantic external force (locally on the cut-off wall), a careful study related to 
progressive failure is an unavoidably necessary measure. 
 

Friction as such is normally a dependable stability agent but, in the current case, the 
voids of the loose mixed soil are filled with soft and sensitive clay material, the strength of  
which is not compatible with currently (or in the past) active vertical effective pressures.   
 

The properties of the very lean Upper Clay layers in the North Spur differ from those of 
normal clays, in which the clay content is usually considerably in excess of the void volume of 
more coarse-grained material. In very lean clays, with loose granular structure of the coarse-
grained portions of the soil, shear deformation will tend to decrease the pore volume 
containing clay or water. This brings about an inherent propensity to soil liquefaction. The 
proneness to liquefaction of this kind makes the results of standard type soil investigations, and 
the associated determination of safety factors in respect of slope stability, very unreliable. This 
applies in particular if the analysis is based on the Plastic Equilibrium mode.  
 

Dependable stability analyses must therefore consider the potential risk of progressive 
failure formation due to the intrinsic tendency to liquefaction, particularly regarding the Upper 
Clay layers. Such analysis must, of course, be based on rapid un-drained direct shear tests on 
virtually un-disturbed clay samples, as progressive failures tend to develop at high rates of 
deformation. The diameter of test samples should not be less than 100 mm.  

These direct shear tests should not be deformation-controlled – i.e. being carried out in 
such a way that the development of failure surfaces is not restrained.  

 
The very fact that the Churchill River valley has developed in the way it actually still 

does substantiates the validity of the geotechnical conditions mentioned above, and which are 
dealt with in more detail further on in this report. The soil masses behind the riverside slope 
have actually exerted their vertical pressures during millennia, and yet even moderate changes 
of lateral loading conditions – such as e.g. hydraulic pressure change, seismic activity, gradually 
failing lateral support, creep deformations and the due loss of shear resistance (because of 
proneness to liquefaction), can release enormous landslides of the kind at Edward Island.   

 
The installation of a watertight membrane, the cut-off wall, is of course advantageous 

for promoting effective pressure increase on soil layers that are truly abiding by the normal 
laws of frictional resistance in granular soils. However, the behaviour of a mixed soil with lean 
clay content may, as will be demonstrated in the following, be totally different. The reduced 
porosity generated by additional shear deformation may simply result in liquefaction, whereby 
the loss of shear resistance, and due shear deformation, will in turn generate a tendency to 
liquefaction further along a potential failure surface, hence resulting in a possible global 
progressive failure condition.  
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In fact, considering the type of sensitive behaviour of the lean Upper Clay No.2 layer, 
the local concentration of hydraulic pressure at the cut-off wall may even create a highly 
disadvantageous condition. Local (concentrated) loading is namely the most common and most 
effective triggering agent in the development of extensive progressive landslides – i.e. slides 
extending more than 70 to 100 metres.   
 

In order to illustrate the specific stability conditions along the riverside slopes of the 
Churchill River Valley, a stability analysis of a typical riverside situation has been carried out in 
Appendix A, (Cf Figure 4.4.)  The result of the analysis is commented in Section 4.23.  

As the clay content in the mixed clayey soil layer is extremely low – the soil mainly 
consisting of sand and silt – the stability investigation is chiefly based on the frictional 
resistance of the mixed soil. Two cases have been analysed demonstrating the decisive effect of 
varying ground water conditions in the soil mass behind a typical riverside slope in the Churchill 
River valley.   

 
Case a. Ground water level at ground surface, roughly renders a safety factor      =  1.09 
Case b. Ground water level at 5 m below ground surface, renders a safety factor = 1.43 
 
              This analysis also indicates why the steep riverside slopes may, at least transiently, 
remain stable. 
 
             The contention of this document does not imply that the North Spur dam containment is 
bound to fail.  

Yet, considering the enormous threat to populated areas that would result from a 
breakage in the North Spur ridge, all stability analyses related to the impoundment must ‘no 
matter what’ prove that the possibility of such a failure is definitely eliminated. 
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                                                     REPORT 
 

On Specific questions regarding the formation of the Churchill River 

Valley and Comments on stability issues related to the North Spur. 

 
1. General 

The Churchill River Valley in Labrador (Newfoundland) differs from most river valleys 

as seen by the author of this article – whether it be observations on land or from high up in 

aeroplanes or helicopters.  

 

Except when passing through lakes, the width of a normal riverbed in looser 

sedimentary formations is related to its gradient and the amount of flowing water per second. 

Even in wide, flat, and in the direction of flow gently sloping areas, rivers tend to meander 

developing a riverbed width corresponding to water-flow and current riverbed gradient. 
 

 

Figure 1.1 Riverbed formation under normal geological conditions, i.e. stable soils with little 

tendency to liquefaction or weakness in any specific sedimentary layer.  

Denotations: Wp1 = Riverbed width      (≈ Wet perimeter),  

                        D      = Mean water depth (WL = Water level). 
 

 
Figure 1.2 Riverbed formation of the type occurring in the Churchill River valley with a 

remarkably wide but shallow riverbed. Denotations as above. 
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The width of the Churchill River bed, upstream and downstream of Muskrat Falls, 

differs in an exceptional way from normal riverbed formations conforming to the description 

pertaining to Figure 1.1.  

 

In the Churchill River Valley, which in principle is shaped as shown in Figure 1.2, the 

riverbed – along a stretch of at least some 30 km – normally has a width of about 1 km. Yet, it 

may locally vary from minimum width of 600 m up to a maximum of 1500 m.   

 

Figure 1.3 Map showing the Churchill Riverbed upstream and downstream of Muskrat Falls. 

        (Copied from part of map produced by Canada Centre for Mapping, Department of EM&R) 
 

Except for an area immediately downstream of Muskrat Falls, the riverbed is notably 

shallow. Even in places, where the water current was observed as being significant, the water 

depth was only about 0.4 m.  

 

1.1  Whirlpool below Muskrat Falls. 
 

The exceptional depth of the riverbed immediately downstream of Muskrat Falls of 

about 70 metres is due to the presence of a ‘whirlpool’ where the water current is so strong 

that sedimentation of the eroded marine sediments originating from the upper Churchill Valley 

cannot take place.  
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Figure 1.4 Arial photo of discoloured water in the water current ‘whirlpool’ immediately 

below Muskrat Falls. This whirlpool is the reason for the exceptional water depth 

immediately below the North Spur.  The discolouring of the water is due to the presence of 

soil particles carried away by the streaming water.  

 

The intent of the following article is to explain the extraordinary features of the 

Churchill River Valley, and to comment on North Spur stability regarding future impoundment. 
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  2: On Extreme Sensitivity of Lean Clays  

Fat clays, i.e. soils rich in clay particles (< 0.002 mm) are known to develop extreme 

sensitivity if exerted to ground water percolation over time. However, clay sensitivity also 

depends on various other factors such as: 

 2.1 The type of biotite –The chemical nature of the ‘flat’ crystals forming the clay 

constituents. (Terzaghi & Peck [1]) 

There are four common types clay biotite namely: 

a)  Montmorillonite  

b)  Illite   

c)  Kaolinite  

d)  Chlorite  
 

2.2 The Liquidity Index  
 

  The Liquidity Index (IL) of a soil expresses the relationship between the actual (natural) 

water content (w), the Liquid Limit (wL) and the Plasticity Limit (wP). The water contents of a 

soil is defined as the ratio – usually in terms of per cent (%) – between the weight of water and the 

weight of the dry material in the probe. The Liquidity index is defined as:  

IL   =  (w – wP)/(wL – wP)                                                                                            …….. Equation  1 

where the parameter wL represents Liquidity Limit – i.e. the water content at which the clayey 

soil material behaves as a liquid on being heavily remoulded.  

wP is the limit of plasticity defining the water content at which the clay ceases to be plastic.  

The difference wL – wP signifies the range of soil plasticity and is denominated the Plasticity 

Index (IP) or the range of plasticity. Hence 

IP  = wL – wP       (Figures 3.3 and 3.4)                                                                       …….. Equation  2 

Thus, if the water content (w) of a clay layer exceeds the liquid limit (wL), the value of 

the Liquidity index IL will be greater than 1 (unity), signifying a point at which the soil, when 

excessively sheared, tends to turn into a viscous slurry – i.e. losing a significant part (or 

practically all) of its shear resistance. 
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2.3 Void Ratio and Porosity  

The relative clay content of a mixed natural clayey-sandy soil layer may be expressed 

as the percentage relationship between the current volume of clay contained in the voids (ΔV) 

of the coarse granular material and the total volume of mixed soil.  

2.3.1 Critical void ratio in granular soils  

The void ratio (n) of a granular soil is defined as -  

ΔV/V = n                                                                                                                    …….. Equation 3a                                           

where V is the total soil volume. 

 

Another related parameter is porosity (e)  

e = ΔV/VS                                                                                                                            …….. Equation 3b 

where VS  is the volume of the solid material content. 

The relation between the parameters e and n is expressed by the equations  

 n = e/(1+e) or e = n/(1-n)                                                                                         …….. Equation 4a, 4b 
                                                                                                           

When a loose granular soil is sheared, its porosity (n) tends to decrease involving 

reduced pore volume and a lower value of the porosity number. This process continues under 

increasing shear strain until the pore volume change gradually ceases at a value denoted ncrit – 

i.e. a value of n at which the void volume remains constant under further shear deformation. 

The parameter (ncrit) is of crucial importance in the current context and is known in 

geotechnical engineering as the ‘critical void ratio’. (Terzaghi & Peck [1]) 

In water saturated soils decreasing void volume inevitably leads to the build-up of 

excess pore water pressures and the related loss of frictional shear resistance - i.e. possibly to 

the extent that even a granular soil (like sand ) may momentarily liquefy. 

This constitutes the reputable phenomenon named Soil Liquefaction, liable to take 

place in loosely compacted, saturated sandy (and silty/sandy) soils when subjected to 

significant shear strain or to the effects of vibration, by which pore void volume (porosity) may 

decrease radically. (Vibrations may result from earthquakes, blasting, piling or vibratory 

activity). 

Yet, although the excess pore water pressures generated by such activities may bring 

about soil liquefaction – i.e. total loss of friction between the soil particles – the reduction of 

shear resistance may in general only be partial.    

However, if on the other hand, a densely compacted soil with an identical granular 

structure is sheared, the porosity (n) would instead increase up to a value corresponding in 

principle to the critical void ratio.                                            
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2.3.2 Liquefaction in lean clays. 

The behaviour of mixed soils of sand, silt and clay strongly depends on the volume of 

the clay   particles (VClay) in relation to the concurrent void volume of the coarser material, i.e. 

the ratio Vclay/ΔV. 

 If, for instance, the clay content VClay is significantly greater than the void volume ΔV – 

i.e. Vclay >> ΔV – then obviously the soil matrix will typically behave as clay, the granular soil 

particles being immerged in the clay without significant inter-granular contact contributing to 

shear resistance. Hence, the strength parameters of such a soil will then correspond to those of 

clay that has been exposed to the same pre-consolidation pressure.    

On the other hand, if the volume of clay (i.e. clay particles including adsorbed water) 

initially is equal or smaller than the concurrent void volume of the granular material, i.e. Vclay < 

ΔV, the properties of the soil matrix become extremely complex and highly dependent of the 

consolidation process and possible ongoing change of the relationship between the void 

volume (ΔV) and the coexisting clay volume (Vclay). 

Hence, in the early stages of sedimentation, such a soil will feature high porosity n = 

ΔV/VS and the clay filling the voids will remain extremely soft. However, as the normal 

pressures increase due to accumulating sediments, the stiffer structure of the granular material 

will gradually tend to carry more and more of the increasing normal stresses, while the clay 

content remains soft and under-consolidated. A consolidation process of this kind will end up in 

a condition, where a major portion of the vertical load is carried by the granular soil matrix.  

This implies in turn, that the degree of consolidation of the ‘void clay will not be 

related to the total effective sedimentary load, as was the case when Vclay >> ΔV.  

As a result, the mixed soil will finally consist of two components with markedly 

different strength characteristics i.e.:   

a)  A stiff but relatively porous largely symmetrically loaded granular soil structure 

carrying a major part of the current vertical load;    

b)  Voids filled with soft clay material, the shear strength of which has little relevance 

to the actual effective vertical load.  
 

Hence, a mixed sandy, silty clayey soil of this kind is likely to exhibit high sensitivity 

when subjected to agents prone to causing liquefaction in granular soils. When sheared, the 

void volume of such a soil will decrease, generating excess pore pressure change resulting in 

reduced effective stress conditions in the granular soil structure.  

The shear resistance of the mixed soil may then be radically reduced – especially if, in 

addition, the soft void clay content is inherently sensitive or ‘quick’.  
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In fact, a lean mixed clayey sandy soil of this kind can liquefy – i.e. even to the extent 

that most of its shear strength is lost – the residual resistance being reduced to a small fraction 

of its initial shear strength. 

2.4 Conclusions 

The implication of the above is that, for markedly lean clays, the shear strength of the 

clay content may not relate to the vertical effective pressure in the normal way. This means 

that the shear resistance of a soil of this kind can be far less – especially under shear strain – 

than what would be normal for a soil with higher clay content. 

Yet, the main problem of the lean clay condition is its impact on sensitivity. If the pore 

volume of the coarse grained material is above the critical void ratio  – i.e. when void volume 

decreases under shear deformation – the effects of significant shear deformation (as well as 

vibratory impact loading) is likely to generate a phenomenon very similar to hydraulic 

‘liquefaction’ in sands. 

An important and complicating feature in this kind of liquefaction is that its duration 

may be highly drawn-out, depending as it is on time related factors such as drainage conditions 

such as low permeability and the thickness of adjacent clayey soil layers. In thick sedimentary 

clays, liquefaction and/or loss of shear strength of this kind can be a very long-lasting 

phenomenon. 

Potential tendency to liquefaction of this nature can make the results of soil 

investigations of standard type extremely unreliable and hence leads to debatable results of 

slope stability analyses.   

Soil investigations in lean clay soil material require un-drained direct shear laboratory 

testing rendering the minimum residual resistance for the relevant rates of load application. 

The large strain residual shear resistance (SR) is namely a crucial parameter when 

predicting both the triggering additional disturbance load as well as the potential extent (i.e. 

the degree of disaster) of progressive landslides in long natural slopes.    

A mixed largely granular soil with small clay content is featured by having:  

a)  A stiff but relatively porous symmetrically loaded granular soil structure carrying a 

major part of the current (or previously existing) vertical load;    

b)  Voids filled with soft clay material, the shear strength of which has little relevance 

to the effective vertical pre-consolidation pressure.  
 

The brittleness of the lean clay soil may also, at least partially, depend on the 

proportions of illite and kaolinite present in the clayey substance. 
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3: Relevance of the phenomena described in Section 2 for clays in 

Churchill River Valley  

3.1 General 

The stability conditions in natural slopes are closely related to their geological and 

hydrological history.  

The loose soil formations, in which the Churchill River has cut its course, consist of 

sediments deposited in sea and fjords during the Great Ice Age. At this time, parts of the 

present landmass were still deep below the present sea level due to the settlement of the earth 

crust because of the enormous weight of glacial ice sheets measuring kilometres in thickness. 

These maritime deposits – emerging from the regressing sea – were later to become 

parts of the Southeast Labrador such as, for instance, the Churchill River Valley.   

3.2 Structure of sedimentary deposits in the Churchill River Valley 

The following description of the sedimentary structure that was later going to shape 

the valley of the Churchill River is based on information on posters at the IWLSC - Conference in 

Québec City, (2013) [2] and sparse geotechnical data presented in the NALCOR Report to the 

Independent Engineer (2014-07-21). [3] 

The soil profiles exhibit massive layers of sands, silty sands, silty clays and clays. 

Figure 3.1 Section B-B through the North Spur showing main sedimentary features according 

to the NALCOR Report, [3]. As indicated in Table 1, the layers of Upper Clay 1 and 2 consist of 

lean silty clays with a permeability k ≈ 1x10-7 m/sec.

The Grand Riverkeeper Labrador Inc. also made it possible for the author of this article 

to perform local observations of soil exposures on land, from boat on the river and from air by 

helicopter in October 2014.  

The different soil layers, being marine deposits, are likely to be similar over wide areas. 

For instance, the Upper Clay Layer No 1, near the present water level downstream of Muskrat 

Falls can be widely observed.  
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Yet, streaming water, varying wave conditions and topography have brought about 

differences in granular content and the thickness of contemporary deposits – especially in the 

upper part of the soil profile. 

3.3 Classification of the Upper Clay layers on Permeability basis   

The NALCOR Report to the Independent Engineer contains little detailed geotechnical 

information about the different soil layers in the North Spur or in layers beyond the riverside 

escarpments.  

However, the water permeability of the soil layers in Section B-B of the North Spur is 

listed in Table 1. The values are in accordance with the NALCOR Report to the Independent 

Engineer (2014 07 27). [3]. 

Table 1 Permeability of soils in the North Spur 

Figure 3:1 shows Section B-B through the North Spur in the mentioned NALCOR 

Report, in which the values of water permeability of six soil layers are defined below:  

Layer 1, Sand           – permeability k ≈     1 x 10-4  m/sec,  Upper sand    

Layer 2, Silty clay-1 – permeability k ≈     1 x 10-7  m/sec,  Upper clay 1 

Layer 3, Silty sand   – permeability k ≈  0.8 x 10-5  m/sec,  Upper intermediate Silty Sand Drift     

Layer 4, Silty clay-2 – permeability k ≈     1 x 10-7  m/sec,  Upper clay 2 

Layer 5, Silty sand   – permeability k ≈   0,8 x 10-5  m/sec,  Lower intermediate Silty Sand Drift     

Layer 6, Clay -2        – permeability k ≈     1 x 10-8  m/sec,  Lower clay to great depth. 

 

The values of soil permeability are of crucial interest in the current context, as they 

enable defining the character of the soils in a general way. Applying the well-known Hazen 

formula, the likely relations between clay-, silt- and sand-content can be appraised.   

A. Hazen was a scientist, who early made thorough studies of water filtration in soils. 

His work was largely focussed on the relationships between the water permeability k (m/s) of 

soil filters and the mean particle grain-size in these filters. References to the Hazen 

relationships are  repeatedly made in the well-known basic geotechnical textbook by Karl 

Terzaghi and Ralf B. Peck named ‘Soil Mechanics in Engineering Practice‘, [1]. 

Figure 3.2 below shows the results of analyses in accordance with the Hazen’s formula 

published in New York (1925). “The filtration of Public Water Supplies”, [5].  

The permeability values of the soil layers in Section B-B of the North Spur listed in 

Table 1 are as mentioned in accordance with the NALCOR Report.  

For the Upper Clays No. 1 & 2, the permeability (k) is stated to be 1x10-7 m/sec.  Hence, 

according to the Hazen relationship displayed in Figure 3.2, this value of (k) would correspond 

to the silty material represented by the green marking added by the author of this article. 
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Figure 3.2 Diagram showing analysis according to Hazen’s formula regarding the relationship 

between soil permeability k (m/s) and mean particle size. 

Hazen A. (1892), Physical properties of sands and gravels with reference to their use in 

filtration.  [4]       

Hazen A. (1925), The filtration of Public Water Supplies, New York (1925). [5] 

 

Furthermore, the figure shows that the permeability of pure clays ranges between k ≈ 

10-11 and 10-8.5 m/sec – the typical permeability being about one hundredth to one thousandth 

times less than the permeability given by NALCOR for Upper Clays No. 1 and 2. [3].  

Hence, Figure 3.2 clearly indicates that the Upper Clay layers 1 and 2 do not contain a 

sufficient volume of clay to actually fill all voids in the mixed sandy, silty, clayey soil, the mean 

permeability (10-7m/sec) being far greater than that of a pure clay material at the same 

consolidation pressure.  

(The blue marking in Figure 3.2 refers to the lower Clay layer No 2, being much richer 

in clay content).  



17 
 

It is therefore evident that the void system in the Upper clay layers cannot be 

completely and fully filled with normally consolidated clay material. In other words parts of the 

void system must still be open to filtering water. This explains the relatively high permeability 

(10-7m/sec) of the Upper Clays 1 and 2 of the North Spur.  

Conclusion: The values of permeability given in Table 1 by NALCOR [3] clearly indicate 

that the Upper clays layers in Section B-B of the North Spur belong to the very lean and 

sensitive types of clay discussed and defined in Section 2 above.  

 

 3.4 Classification of the Upper Clay layers based on the Liquidity and 

Plastic Limits 

The NALCOR Report to the Independent Engineer contains little information regarding 

soil properties for specific identifiable soil layers that would make it possible to perform valid 

studies of stability related to the North Spur. However, sparse overall geotechnical data and 

information were given on posters at the IWLSC - Conference in Québec City (2013). Yet, this 

information was also defined in very general terms such as the t6able below:  

Table 2 Soil data according to posters on the IWLSC - Conference in Québec (2013) 
 

Water content     w      %     21 – 41                  Index of Liquidity              0.7 – 3.0 

Liquid Limit       wL      %     19 – 39                  Index of Plasticity (IP) %      8 – 25                  

Plastic Limit       wP      %      13 – 23                  Sensitivity                             2 – 28 

Un-drained shear strength   40 –120 kN/m
2
      Effective cohesion c’            0 – 10    kN/ m

3
 

Initial void ratio eo            0.93 – 1.06                

Unit weight at natural water content,  γm                                                   18.4 – 19.7 kN/ m
3
 

                                                                         
As the values in Table 2 just exhibit wide ranges of soil sample properties, the precise 

and coherent values applicable to specific soil layers of interest are not presented. The values 
given in Table 2 are therefore as such of little value for geotechnical analysis – e.g. for the 
assessment of hazards related to slope stability.      

 

If the properties of the mixed clayey soils given by NALCOR are diagnosed in terms of a 
Casagrande Plasticity Chart [6], they will all fit within the yellowish square shown in Figure 3.3. 
This area corresponds to a wide spread of different soils with properties ranging from stable 
inorganic clays of medium plasticity to unstable mixed inorganic clays of very low plasticity, 
bordering to extremely lean mixed clayey soils. For instance, the shear resistance and the 
sensitivity of the soils represented by the yellow rectangle may be radically different.  

 
(References [1] and [8] also define and describe the existence of so called ‘Boarder-line 

materials.) 
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Figure 3.3 Relations between 
Liquid Limit (wL) and 
Plasticity Index (IP) for soils. 
(Plasticity chart in accordance 
with A. Casagrande 1932, 
“Research on the Atterberg 
limits of soils”, Public Roads 
13, pp 121-136.) [6] 
 
                   (Note. The yellow 
rectangular area in the Figure 
has been added to the 
diagram by the author of this 
report) 
 
 
 
 

Yet, although the NALCOR data cannot be used for the detailed assessment of slope 
stability, they still confirm the conclusions previously made in Section 3.3 regarding the lean 
clay content in the Upper Clay layers 1 and 2 – and that especially if the accumulated 
knowledge contained in the Casagrande Plasticity Chart in Figure 3.4 is considered.  

  
The plasticity chart, in Figure 3.4 below, demonstrates how the properties of clays may 

largely be related to their geographic location – primarily because of differing contents of the 
main types of clay substance, such as montmorillonite, kaolinite and illite. (Section 2.) 

 
As already mentioned, the yellow area represents the ranges of soil data given by 

NALCOR (IWLSC, Québec, 2013), Reference [2].  
However, the coloured and striated areas within the yellow rectangle apply, according 

to the Casagrande Chart, to soils in Canada and Northern USA [6]. This means that the NALCOR 
data for mixed soils given in Table 2 are very likely represented by the narrow green area within 
the yellow rectangle in Figure 3.4 below.   

 

Furthermore the greyish area – included within the NALCOR ranges of soil properties –
applies to extremely lean sandy (silty) clays in these geographical regions, featuring very low 
Liquid Limits (wL ) and high Limits of Plasticity (wP ) – thus representing values of the Plasticity 
Index as low as IP ≈  8 %. (IP = wL – wP).  
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Figure 3.4 Relations between Liquid Limit (WL) and Plasticity Index (IP) for a wide range of 
mixed soils. The yellow area corresponds to the data given by NALCOR [2] in respect of Liquid 
Limits and the Plasticity Indices applying to the Upper Clays 1 and 2 shown in Figure 3.1.   
(Plasticity chart according to A. Casagrande 1932, “Research on the Atterberg limits of soils”, 
Public Roads 13, pp 121-136. [6] 
 (Note. The colouring of specific areas in the figure has been made by the author of this report). 
                 

 

Conclusion: The low values of IP indicate the presence of extremely lean clays mixed 
with sand and silt – i.e. precisely the types of lean sensitive clay discussed under Item 2.32 
above. 

 
3.5 Classification of Clay layers based on site observations   
 
As mentioned under item 3.1, the Grand Riverkeeper Labrador Inc. made it possible for 

the author to perform local observations of soil exposures and slides on land, from boat on the 
Churchill River and from air by helicopter in October 2014. The following comments are 
restricted to clay formations near river water level (WL) - as for instance seen in Figure 3.5 
below. 
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Figure 3.5 Clay exposure a few hundred metres upstream of the Large 2014 Landslide seen on 
Figure 3.6. (Photo: Eldred Davis)  
  
 

3.5.1 Clay exposure just North of the recent (2014) slide that is shown  
on Figure 4.3. 
    

Figure 3.5 shows a large exposure of the type of lean clay discussed in Section 2. 
Merely the effect of repeated stamping with a foot was enough to cause visible wavelike 
movement of the clay surface, indicating sensitivity and high propensity to soil liquefaction. 

 
Another important, easily identifiable property of this clay layer was its proneness to 

being eroded. The large erosion scar on the picture has been caused by water trickling during 
rain. Many other smaller recent erosion scars were to be seen – of which one is right in the 
centre of the riverside scarp in the picture. 

   
This proneness to erosion indicates that the clay content in the soil is low, and that the 

strength of clay material in the voids of the coarser soil structure is not compatible with the 
vertical pressures that existed before the wide riverbed valley was formed.  

   
In other words, the lean clay in the exposure matches the description in Section 2.3, 

and which is briefly defined in Paragraph 2.4 Conclusion. This means that the clay content of 
the mixed soil is highly under-consolidated, thus indicating propensity to soil liquefaction. 
 

Similar observations were also made along the clay exposure at the foot of the most 

recent downstream slide in the North Spur.      



21 
 

3.5.2 Another Clay exposure, North of the 2014-slide 
 

Figure 3:6, below, illustrates another feature of the clay exposures. Although the scarp 

forming the riverside is only 1 to 1.5 metres high – the river being very shallow here – deep 

cracks have developed in the clayey soil, indicating impending local failure. This means that the 

cohesive strength of the mixed silty, sandy clay is only in the order of 4 to 6 kN/m2 as                    

the shear resistance to avoid failure is about c ≈ 0,20∙ƍ∙g∙H = 0.2∙19∙1,5 ≈ 6 kN/m2. 

However, considering that this soil layer, way back in the past, has been subjected to effective 

pressures corresponding to the weight of, at least, some 30 metres of overlying marine 

sediments, the cohesive shear strength ought to exceed the current values by far. 

 

For instance, a clay with a normal illitic clay content, actually exposed to effective 
pressures of that magnitude in the past, should have a shear strength in the order of 70 kN/m2   
–  i.e. about ten times higher than the  actual cohesive strength of the soil in the clay exposures 

close to the current river WL. (Confer expression in Note * below.) 
 

This striking incongruity also points to the specific kind of lean clay, the properties of 
which are described in Sections 2.3 and 2.4 above.    
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure  3.6. Clay exposure close to river WL (October 27, 2014). The 2014-Landslide is seen in 
the background.  (Photo: Eldred Davis)  
  

Note * (c ≈ 0, 45∙wL∙ƍ∙g∙H > 0,45∙0.26∙19,7∙30 ≈ 70 kN/m2)  Formula according to Hansbo S. 

1957, where wL is the Liquidity Limit. (Cf Reference [7]).  
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4: Implications of the properties of markedly lean clays for the 
    Churchill River Valley  

 
4:1 General  
 
As mentioned in Section 3.1, the loose soil formations, in which the Churchill River has 

cut its course, consist of maritime deposits from the final phases of the Great Ice Age.   
 
As of today, the Churchill River cuts its way through these soil layers, the properties of 

which have formed the spectacular, unusual shape of this river valley illustrated in Fig. 1.2. Two 
important soil properties to be considered in this context are: 

a) In coarser marine sediment layers of fluvial or disturbed water origin (sands and silts 
in rivers and beaches), the grain size distribution is locally very even, making such soils highly 
sensitive to erosion.      

b) The properties 
of the Upper Clays 1 and 2 
(in the North Spur) 
depicted in Figure 3.1 are 
dealt with in Sections 3.1 to 
3.4 above. The results of 
these studies indicate that 
the Upper Clay layers No. 1 
and 2 consist of mixed 
sandy/silty soils with very 
sparse contents of clay 
substance.  

 
The properties of 

the exposed marine clay 
layers downstream of 
Muskrat Falls, discussed in 
Section 3.5, are mainly 
based on observations and 
physical inspection.  

                                    Figure 4.1 One of many smaller ‘superficial’ slides between Goose    
Bay and Muskrat Falls. (Photo: Eldred Davis)    
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4.2 Erosion processes  
 
In the current context, the clay layer spaced above and below the Churchill River water 

level (i.e. the WL on October 27, 2014) is of particular interest as the depth of the wide and 
shallow riverbed generally seems to be largely restricted by this layer, whereas the riverside 
slopes rise steeply up to the ground level of the original marine sedimentary structure.  
(Cf Figure 4.1)                                       

 

There are basically two kinds of erosion processes in the Churchill River valley.  
 

4.2.1 Short term erosion 
   
Figure 3.5 clearly indicates the progress of erosion.  At high water levels, i.e. exceeding 

the top of the clayey soil layer, the foot of the sandy, silty slope above the clay is eroded by the 
streaming water.  
As the critical angle of friction is surpassed, the uniformly graded sands and/or silts in the slope 
slide in smaller or larger blocks into the river, soon getting washed away by the water current. 
Yet, as may be concluded from the Figures 3.5 and 3.6, the lean clayey formations shown are 
also subject to erosion, although to a much lesser extent than the overlying more uniformly 
graded granular soils. 

 

However, in a somewhat extended time perspective, the clayey layer also gets worn 
away thus undermining the foot of the current slope. Also this process results in earth slips and 
slides of the character shown in Figure 4.1.   

       
In many places, the progress of erosion is so fast (i.e. in geological terms) that 

vegetation does not even manage to get a foothold before the next slide event – a 
phenomenon evidenced by the many barren slopes and sandy exposures that can be seen in 
the Churchill River valley.   

 

                       4.2.2 Longer term widening of the Churchill River Valley by massive  
          landslides 

 
As evidenced by the enormous landslide at Edward Island upstream of Muskrat falls, 

and the recent 2014 Landslide on the North bank downstream of Muskrat Falls, the widening of 
the Churchill River valley also takes place in the form of gigantic landslides involving soil masses 
distant from the riverside slope. These steps in the valley widening process may be so extensive 
that they, if the area had been more populated, would have been labelled as major 
catastrophes. 

In geological terms, these types of giant landslides have been going on for thousands 
of years, i.e. in principle ever since the marine sediments emerged from the regressing sea. Yet, 
the easily eroded masses of soil that have slid into the river have been washed away relatively 
soon.   

The massive landslides of this kind can be explained as follows:  
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The short term erosion effects, described in the previous section, increase the shear 
stresses in the lean sensitive clay layers that can be seen in Figures 3.5 and 3.6.  (This clay layer 
is also exemplified in Figure 4.4).   

In other words, the gradually failing lateral support at the riverside slope generates a 
massive shear stress build-up in the clay layer carrying the overlying soil masses further away 
from the riverside.  

Figures  4.2a and 4.2b The Edward Island landslide (200?). The two photos have been taken in 
different angles and aerial positions. The enormous extent of the landslide can be understood 
considering that the encircled areas represent the same locality. (Photos: Cabot Martin.)  

 
Figure 4.3 The 2014 Large landslide South of Muskrat Falls. Widening of the Churchill River 
valley by large ‘quick-clay’ slides.  (Photo: Cabot Martin.) 
 

In addition, the deviatory deformation related to the shear stress increase causes a 
creep movement in the slope direction that in turn will generate vertical cracks or 
corresponding tensile extension and loosening of the granular soil structure. Both of these 
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processes may give rise to faster penetration and improved access of water to the deeper soil 
layers, very likely causing massive increase of hydraulic pressures in periods of heavy rainfall or 
melting snow.  

The total shear deformation, due to all these effects may well result in liquefaction of 
the kind dealt with in Section 2. (Paragraph 2.4). 
 

4.2.3 Analysis exemplifying the long term widening process in Churchill 
          River Valley 

 
Figure 4.4 shows typical condition with marine sediments of mostly uniformly graded 

sands and silts resting on a clay layer with properties similar to those in the Upper Clay layer 2 
in Figure 3.1 related to the North Spur. 
 

 
Figure 4.4 Typical slope section close to the 2014 Landslide between Goose Bay and Muskrat 
Falls. The section is assumed to have marine sediments similar to those in the North Spur. 
 

The object of the analyses in Appendix A is to demonstrate the propensity for large 
landslide formation related to the current geological conditions. The soils above level B are 
taken to consist mainly of uniformly granular friction material (sands and silts) with a mean 
friction value of φ o.  Two cases are analysed – 

Case a. Ground water level (GWL) at ground surface. 

Case b. Ground water level (GWL) at 5 m below ground surface. 
 

4.2.4 Conclusions from the analysis in Appendix A  
 

On the basis of mainly frictional resistance, the safety factor in Case a is estimated to  
be:             

Fs = 6502/5985 ≈ 1.09, and in Case B, Fs = 7006/4885 = 1.43 

 

The mean shear stress along failure surface BC is then: (plastic approach) 
τBC ≈ Hz =30m /L BC = 5985/50 ≈ 120 kN/m2  
 
According to the NALCOR Report, Ref. [2], the Liquid Limits (WL) for the mixed soils 

range between 20 and 39 %.  
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However even if, hypothetically, the clay content in the lean bottom clay layer had 
significantly exceeded the current void ratio, having for instance a Liquid limit WL = 40 %, the 
mean shear strength along failure surface BC – estimated with Hansbo’s formula  – applying to 
illitic clays) – would still only be:  

c ≈ 0.45∙σ’∙WL 
 where σ’ denotes the pre-consolidation pressure.     (Reference [7]) 

                  – i.e. for WL = 40 %, c = 0.45∙9.9∙30∙(40/100) ≈ 53,5 kN/m2, and for   
                   WL = 19 %, c = 0.45∙9.9∙30∙(19/100) ≈ 25,4 kN/m2 
 
Point A - Considering that, in this condition, the required shear resistance to avoid 

failure is at least τBC = 120 kN/m2 – i.e. more than 2.2 times the available strength of a normally 
consolidated illitic clay with c = 53,5 kN/m2 – it is thus apparent that the stability of the steep 
riverside slope, and the soil structure behind it, almost totally depend on the frictional capacity 
of the lower clay layer. 

The effect of even minor proneness to liquefaction is therefore an inherent landslide 
hazard.  

 
Point B - Another vital condition in this context is the acute impact on the stability of 

the riverside soil masses of changes related to the ground water conditions. For instance, the 
five metres change of the ground water level (GWL) reduces the safety factor Fs from 1.43 in 
Case b) to 1.09 in Case a).     

 

4.2.5 The landslide at Rollsbo about 20 km North of Gothenburg, 
           Sweden. (1967)  

 
The author of this article had the opportunity to study an investigation of the Rollsbo 

landslide (a large landslide having an area of about 20,000 m2), carried out by the Swedish 
National Road Administration (SNRA). The slide event took place when steel pipes for the 
installation of vertical drainage were being driven with a pile-rammer machine. 

 
When reviewing the soil conditions, the author detected that the failure surface, located by 

the SNRA, was mainly confined to a narrow sandy clay layer with unusually low clay content. 

The failure surface was surprisingly not located in the sensitive normally consolidated soft clay 

that dominated the soil profile.  

 
It was thus evident that the lean sandy clay was weaker and more sensitive to 

disturbance, having greater inherent propensity for landslide development than the 
surrounding fatter sensitive clay layers of the normal kind in the area. 

 

4.3 Conclusions from the analysis in Appendix A    
 
The example in the previous section demonstrates that the steep riverside slopes may, 

at least transiently, be stable due to the fact that the clay content, in the mixed riverbed layer – 
dealt with in Sections 3.51 and 3.52 (and exhibited in Figures 3.5 and 3.6) – is so low that the 
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shear resistance in potential failure surfaces is essentially related to friction in the coarse 
sandy/silty material.  

 

The total shear resistance is therefore only to a minor extent related to the cohesive 
strength of the under-consolidated clay in the voids of the granular soil structure.    

 

Friction as such is normally a dependable stability agent but, in the current case, the 
voids of the loose mixed soil are filled with soft and sensitive clay material, the strength of 
which is not compatible with currently (or in the past) active vertical effective pressures. Yet, 
the void clay may in some measure have contributed to the looseness of the granular structure 
of the mixed soil.  

 

However, when loose soils of this kind are subjected to shear deformation, the void 
volume of the dominantly coarse-grained and loosely layered soil tends to decrease. This leads 
in turn to excess pressure build-up in the void clay, possibly resulting in liquefaction, or at least 
in a drastic loss of shear strength, as explained in Section 2 above. (Confer the Conclusion in 
Paragraph 2.4.) 

The crucial issue in this context is the fact that liquefaction in this case relates to the 
under-consolidated pore clay as such – i.e. not only to water.  

Extreme excess pore water pressures in ‘quick-sand’ normally tend to abate quickly but 
in clayey soils – depending on layer thickness and low permeability – pore pressure dissipation 
may be a long lasting process, possibly extending over even years or decades. 

 
The extraordinary development of the Churchill River Valley, as described in Section 1, is 

due to the lean character of, in particular, the riverbed clay layer, dealt with in Section 3. This 
clay is highly sensitive and prone to liquefy on being exerted to additional shear deformation 
and the properties of which – according to the site observations – also conform to those of the 
Upper Clay 2 in the North Spur.    
 

Importantly, it may be observed that the sensitivity of the clays in the Churchill River 
Valley is of a specific nature that should not be confused with sensitivity related to highly over-
consolidated clays, such as for instance those of over-consolidated clays common in the Québec 
area.  

The correct geotechnical approaches to soil investigation, to type of stability analysis, 
and to stability criteria, are not identical.  

 
Also, the sensitivity of normally consolidated (and slightly over-consolidated) Scandi-

navian clays is of a different nature than that of the lean clays in the Churchill River Valley.   
 
Hence, agents triggering landslides, slide progression and the configuration of finished 

slides in the Churchill River Valley may not be compatible at all with landslides occurring 
elsewhere.  
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Slides in the Churchill River Valley are mainly of two kinds:  
 
1)  Smaller, essentially superficial slides along the riverside due to on-going 

undercutting of the steep riverside slopes by streaming water. These slides are in places 
recurring to the extent that vegetation does not even manage to get a foothold before the next 
slip event takes place, as evidenced by the many barren sandy slope exposures along the river.   

 
2)  Large landslides of a progressive or retrogressive nature involving elevated ground 

further away from the riverside. Slides of this kind may be triggered by various agents but in 
places that are little affected by human activities, the most likely reasons for the large 
landslides are effects of seismic activity, heavy drawn out precipitation, pressure changes in 
ground water aquifers. 
              The mixed lean clayey soils possess an inherent proneness to liquefaction, when 
exerted to shear deformations – i.e. in accordance with the Paragraphs 2.4 and 4.2.2 above. 

 
The slides, depicted in Figures 4.2 and 4.3, represent good examples of the latter kind 

of river valley formation such as the one shown in Figure 1.2. 
 
The major problem of the lean clay condition is its impact on sensitivity. If the pore 

volume of the coarse material is above the critical void ratio (ncrit) – i.e. in the state when void 
volume decreases under shear deformation – the effects of significant shear stress increase  (as 
well as that of vibratory impact loading) will be likely to generate phenomena very similar to 
hydraulic ‘liquefaction’ in sands. The residual shear resistance may then be reduced to a minor 
fraction of the initial shear resistance. 

 
It is vital to observe that these landslides cannot be predicted by means of the 

conventional so called Plastic Equilibrium Mode that has been a dominant approach to slope 
stability analysis during most of the 20th century. Modern research has shown that this 
analytical model does not apply to long slopes in sensitive clays and that simply because the 
approach is neither physically nor mathematically valid. (Cf  References in Appendices B and C.) 

 
 

5: Implications of the properties of markedly lean clays for North Spur 
     Stability related to impoundment 
 

The soil properties related to lean clay formations in the Churchill River Valley have a 
significant impact on the assessment of slope stability and the factors of safety related to the 
same. 

 
The North Spur in its present state has numerous large landslide scars, of which some 

are due to recent landslide events, indicating that erosion and land-sliding – like in the rest of 
the valley – is an on-going process. The problems in this context in the North Spur are primarily 
connected with Upper Clay layers (1) and (2). (See Table 1 in Paragraph 3.3 and Reference [3]).   
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These issues are of course well known prerequisite conditions that must have been 
contemplated by NALCOR and SNC∙LAVALIN. 
  

 
Figure 5.1 Section K–K, NALCOR [3]. The force denoted H represents an additional 

load due to impoundment from level +17 m to +39 m. At Level +17, the value of H, acting on 
the soil mass above the drawn potential slip surface, amounts to 2,420 kN/m or 24,200 metric 
tons over a width of 100 m. (Vertical scale/ Horizontal scale = 2.5 /1.0 .) 

 
The way these potential landslide threats seem to have been mainly considered in the 

design of the North Spur Dam containment are: 
1) Pre-consolidation of critical clay layers by lowering the ground water pressures in 

relevant aquifers.  
2) Establishing a water tight membrane (the cut-off wall, COW) in the up-stream part 

of the North Spur ridge. 
3) Establishing erosion protection banks in various places. 
 

5.1 Pre-consolidation of clay layers 
 
The lean clay layers in the Churchill River valley are, as indicated by the discussion in 

the previous Sections 2, 3 and 4, of an unusual, and from a geotechnical point view very 
problematic nature.  

 

The problem with the markedly lean clays, with a loose coarse-grained structure, is 
that although frictional resistance corresponding to essentially symmetrical vertical effective 
pressures can be mobilized over long time (centuries, millennia), the result of a momentary 
increase of shear stress and the due lateral shear deformation may generate liquefaction in the 
mixed soil, whereby all, or most, of the shear resistance may be lost. This is a condition with 
inherent propensity to progressive failure development. 

  
Potential tendency to liquefaction of this nature makes the results of standard type soil 

investigations and laboratory testing unreliable. Slope stability analysis, and related safety 
factors, based on such results may therefore be totally inaccurate.  

 

The very fact that the Churchill River valley has developed in the way it actually does 
substantiates the validity of the geotechnical conditions dealt with above. The soil masses 
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behind the riverside slope have exerted their vertical pressures during millennia, and yet even 
moderate changes of the lateral loading conditions such as water pressure change, seismic 
activity, gradually failing lateral support, creep deformations and the due loss of shear 
resistance (because of the proneness to liquefaction), can release enormous landslides of the 
kind at Edward Island.   

 

The impoundment up to Level +39 means exerting the clay layers at Level +10 with an 
additional load of 3960 kN/m, i.e. representing an external, active additional load of 39,600 
metric tons over width of 100 m.  

 

The corresponding force on the soil mass above level +17, acting on the failure surface 
indicated in Figure 5.1, (Section 1 000), is 2,420 kN/m, i.e. a horizontal additional force capable 
of generating significant lateral shear deformation and due loss of shear resistance.  

  
 

5.2 Establishment of a water-tight membrane (COW = Cut-off wall) 
 
The installation of a watertight membrane (by injecting bentonite) is of course 

advantageous for promoting effective pressure increase on soil layers that area truly abiding by 
the normal laws of frictional resistance in granular soils.  

 
However, the behaviour of a mixed soil with lean clay content may, as has been 

demonstrated in previous chapters, be totally different. The reduced porosity generated by 
shear deformation may simply result in liquefaction, whereby the loss of shear resistance may 
in turn generate additional liquefaction further away along the potential failure surface, thus 
resulting in a global progressive failure condition.  
 

In fact, considering the type of sensitive behaviour of the lean clay (in Upper Clay 2), 
the local concentration of additional hydraulic pressure at the COW is even likely to create a 
highly disadvantageous condition, local (concentrated) loading namely being the most common 
and most effective triggering agent in the development of extensive progressive landslides – 

i.e. slides potentially longer than 70 to 100 metres.   
 
The many documented slides in the Churchill River valley are actually precisely due to 

the presence of the specific type of lean clay formed under marine sedimentary conditions 
during the Ice Age. 

  

 Conclusion: The potential effects of the high local stress build-up along the water 

tight membrane (COW) should be thoroughly investigated on the basis of the Progressive 

Failure mode. (e.g. the failure surface indicated in Figure 5.1. should be studied.) 

Also, it must be recognized that the Plastic Equilibrium failure mode has no relevance 
in this context.  
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5.3 Erosion protection banks   
 
Generally erosion protection is a good measure regarding stabilisation, especially from 

erosion points of view.  
Yet, in respect of the risks related to progressive landslide development, stabilisation 

of the toes of the slopes is of limited avail.  
 
 

6: Concluding remarks 
 
The contention of this document does not imply that the North Spur dam containment 

is bound to fail. Yet, considering the enormous threat to populated areas that would result 
from a breakage in the North Spur ridge, the possibility of such an event must no matter what 
be eliminated. 

 
Modern research requires that the stability analysis of long slopes with sensitive clay 

must carefully take the risk of ‘brittle slope failure’ into consideration. As the impoundment 
represents a gigantic external force (locally on the COW), a careful study related to progressive 
failure is an unavoidably necessary measure. 

 
Friction as such is normally a dependable stability agent but, in the current case, the 

voids of the loose mixed soil are filled with soft and sensitive clay material, the strength of 
which is not compatible with currently (or in the past) active vertical effective pressures.   

The properties of the very lean Upper Clay layers in the North Spur differ from those of 
normal clays, in which the clay content is usually considerably in excess of the void volume of 
more coarse-grained material.  

 
In very lean clays, a loose granular structure of the coarse-grained portion of the soil 

will render a decrease of the pore volume, when exerted to shear deformation. This brings 
about an inherent propensity to soil liquefaction.  

 
The proneness to liquefaction of this kind makes the results of standard type soil 

investigations, and the associated determination of safety factors in respect of slope stability, 
very unreliable. This applies in particular if calculations are based on the Plastic Equilibrium 
mode of analysis.  

 
Dependable stability analyses must therefore consider the potential risk of progressive 

failure formation due to the intrinsic tendency to liquefaction, particularly regarding Upper Clay 
layer No: 2. Such analysis must, of course, be based on un-drained direct shear tests on virtually 
un-disturbed clay samples, the diameter of which should not be less than 100 mm.  

These direct shear tests should not be deformation-controlled in such a way that the 
development of failure surfaces is in any way restrained, thus establishing the crucially 
important value of the residual shear resistance of the lean clayey soil.  



32 
 

This can be achieved with the test specimen being confined by rings as for instance in 
Reference [9], (11th ICSMFE, San Francisco, 1985). 

  
One way of testing for residual shear resistance could be to retrieve large, virtually 

undisturbed, samples from apt soil exposures and then apply the original vertical effective 

pressure on the specimen before shearing the same at an appropriately high rate of shear 

deformation. Shear deformation in an on-going progressive landslide tends to be fast. 

 
Vane tests such as those performed by Aas, G. (1966) may also be instructive in the 

current context. (Cf Ref. [10]) 
 
Furthermore, the analyses of potentially extensive slides must not be based on the 

Plastic Equilibrium Concept, as this failure mode is not valid under current conditions.  
 
Studies of progressive failures in highly sensitive Scandinavian clays indicate that the 

Plastic Equilibrium mode of analysis is no longer applicable, when potential landslides extend 
more than 70 to 100 metres – the distance largely depending on the depth of the failure surface 
below the ground level.  

 
Furthermore, the possibility of progressive failure developing in Layer 6 – i.e. ‘the 

Lower Clay’ extending to great depth according to Reference [2] – should also be investigated. 
 
 

********************** 
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APPENDIX A 

Analysis of the section in Figure 4.4. 
 
The objective of the following analysis, based on the section shown in Figure 4.4,  is to 

demonstrate the propensity for large landslide formation related to the current geological 
conditions. The soils above level B are taken to consist mainly of uniformly granular friction 
material (sands and silts) with a mean friction value of φ o.    
The void ratio for loose mixed-grained sands of current type is assumed to be (n) = 40 %.  
(in accordance with Terzaghi & Peck, (Ref. [1] , Article 6, (Table 6.3):  
         
Hence, the porosity  e = n/(n–1) = 0.40/0.60 = 0.6667         = 66.67 %   
 
Rock density             γR = 26.5 kN/m3,     Water density γH20 = 10 kN/m3 

 
The water content  w  = Wwater//Wrock = e∙γH2O/γR                  = 66,67∙10/26.5 = 25.16 % 
 
Density (water saturated) γw = (w+1)/(w+γH20/γR) = (0.2516 +1)/(0.2516 +10/26.5)  
                                                    = 1.2516/(0,2516 + 0.3774) = 19,90 kN/m 3  
Density (under water        γw’ =  γw– 10      = 19,9 – 10        =   9.90   kN/m 3,  
 
Dry density                  γd    = γR/(1+e)    = 26.5/1.667       = 15,90  kN/m 3  
                             or     (γd     = (1-n)∙γR /1 = (1– 0.40)∙26.5 = 15,90  kN/m 3 )  
 
Internal friction value φ = 30 o,                   Length BC  = 50 m  
 
Effective cohesion c’ in the clay layer    = 6 kN/m2.            (Cf Section 3.52) 
(According to Ref. [2], c’ is in the range of 0  10 kN/m 3). 
 

As the clay content in the clay layer is extremely low – the soil mainly consisting of 
sand and silt – the stability investigation is tentatively mainly based on frictional resistance in 
the lean sandy clay. The currently effective cohesion is taken to be only c’ = 10 kN/m 2. Cf [2] 
 
 

Case a 
 
Ground water level (GWL) at ground surface i.e. z = 0,  zB = 30 m, 
 
Horizontal earth pressure (p kN/m2) at a depth of z = 30 m 
pZ          = γw’∙z∙tan2(45 – φ/2) + γH20∙z∙   = 9,9 ∙z∙0.33333 +10 z 
Hz =30 m  ≈ 0.33333∙γ’∙ z 2 /2 + γH20∙ z 2 /2  = 0.33333∙9.9∙ 302 /2 + 1∙10∙ 302 /2 

              = 1485+ 4500 = 5985 kN/m    
 



34 
 

 
Mean shear stress along surface BC (plastic approach): 
τBC ≈ Hz =30 m /L BC = 5985/50 ≈ 120  kN/m2 
 
Shear resistance along surface B–C 
 
Rz =30 m  = o ʃ 50c’∙dx + γw’∙[z30∙o ʃ 20 dx + 20 ʃ 50z30/2∙dx)]∙tan φ  
=10∙50+(19,9–10)∙[(30∙20 +30∙30/2)]∙tan30o = 500 +9.9∙[600 + 450]∙tan30=  
= 500 +10395∙0.5774.= 6502 kN/m, roughly rendering a safety factor of only: 

Fs (a) = 6502/5985 ≈ 1.09 
  
 

Case b.  
 
Ground water level (GWL) at 5 m below ground surface, i.e. zw= 5,  zB = 30 m, 
Horizontal earth pressure (p kN/m2) 
 
pZ = γd∙ zw∙tan2(45 – φ/2)+ γw’∙ (z– zw)∙tan2(45 – φ/2) +γH20∙(z– zw) 
(tan2(45 – φ/2) = 0.33333) 
Hz =30 m  ≈ 0.33333 γd∙[(zw

2 /2+ zw∙(z30 –zw)]+0.33333 γ’∙(z– zw)2 /2 + γH20∙(z– zw)2 /2  
              = 0.33333∙15.9∙[5∙5 /2 +5∙25)] + 0.33333∙9.9∙(30–5)2 /2 + 1∙10∙(30–5)2 /2 
              = 66.3 + 662.4 + 1031.3 + 3125.0 = 4885 kN/m   

  
The total shear resistance based on friction and effective cohesion (c’ = 10 kN/m2) with  
GWL at z = 5 m is: 
 
 Rz = 30 m  = o ʃ 50c’∙dx + [o ʃ 25γd∙ zw + 25 ʃ 50 γw’∙(z30– zw)]∙tan φ∙dx =    
               = 500 +[(15.9∙5+9.90∙25)∙25+9.90∙25/2∙25)]∙tan30 =   
               = 500 +25∙[79.5+247.5+123.75]∙tan 30 = 
               = 500 + (79.5+247.5)∙25∙tan30∙+123.75∙tan30∙25 =  
               =  500 + (327+123.75)∙0.5774∙25 = 500+11269∙0.5774 = 500+6506 =7006 kN/m 
 
This renders a safety factor: 
 

 Fs (b)  = 7006/4885 = 1.43 
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Specific references. 

[1] Karl Terzaghi and Ralf  B. Peck, ‘Soil Mechanics in Engineering Practice‘.
(Reference is made to 2nd version, 1967.)

[2] Information on posters at the IWLSC - Conference in Québec City, (2013).
[3] NALCOR Report to the Independent Engineer (2014-07-21).

[4] Hazen A. (1892), Physical properties of sands and gravels with reference to their use in
filtration.

[5] Hazen A. (1925), The filtration of Public Water Supplies, New York (1925).

[6] Casagrande  A. (1932) – Research on the Atterberg limits of soils, Public Roads 13,
pp 121-136.

[7] Hansbo S. (1957) – A new approach to the determination of shear strength of clay by
the fall cone test. Swedish Geotechnical Institute, (SGI), Proceedings No 14.

[8] Modified Plasticity Chart, United Soil Classification System, USBR 1963.

[9] Bernander & Svensk I, et al, (1985). Shear strength and deformation properties of clay
in direct shear tests at high strain rates. Proc. 11 th ICSMFE, San Fransisco,
Vol. 2/B/5, pp 987-990.

[10] Aas, G. (1966). Special Field Vane Tests for the Investigation of Shear Strength of
Marine Clays (in Norwegian), Report, Publication 68, Norwegian Geotechnical Institute,
Oslo, Norway.

Research Institutes, in which Progressive Failure analyses are recognized methods of 
procedure and with documented capacity of performing progressive failure analyses are given 
below.  

Luleå Technical University, Luleå, (Sweden), 
Norwegian University for Technical & Natural Sciences (NTNU), Trondheim, (Norway), 
Norwegian Geotechnical Institute, NGI, Oslo, (Norway),  
Laval University, Québec City, (Canada) and 
Queen's University, Kingston, Ontario, (Canada). 



36 
 

APPENDIX C – Comprehensive list of References to publications on the 

subject of brittle slope failure presented at World Conferences and Symposia.  
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                                                                                                                        2016-01-07 

 

Further Comments on the Updated Nalcor 21-July-2014 Report.   

 
                                                 *********** 

The following comments can be regarded as complementary to the previous 

Report, October 14, (2015) by the undersigned in respect of the Nalcor 

Updated Report 21- JUL-2014 on the Lower Churchill Project.* 
                                                    

The previous report on the subject by this author was by the Grand Riverkeeper Inc. titled: 

 LOWER CHURCHILL RIVER  
  RIVERBANK STABILITY REPORT 

 

*Note: The undersigned has not yet had time and opportunity to scrutinize the new SNC 

Lavalin report named:  “North Spur–Stabilization–Works–Progressive –Failure- 

Study”. This 128 pages long study was received on January 20, 2016.  
 

As most of the following comments had already been written in December, they will be 

forwarded to Grand Riverkeeper Labrador, Inc., regardless of possible implications related  

to the New SNC Lavalin study.  

It is considered that they may, in any case, be of importance to GRK – particularly in respect 

of all the various questions on geotechnical issues raised by persons involved. 

  

                                                         *********** 
 

The Complementary Comments are denoted Points 1  8: 
(Note: Minute revisions of linguistic nature made 2016-08-05) 

 
  

Point 1. Every geotechnical engineer knows (or should know) that a loosely compacted 

sandy water-saturated soil may liquefy if its porosity (usually denoted n) is greater than the 

critical porosity (ncrit). Another way of defining void volumes in soils is by the Void ratio 

(e), and the Critical Void ratio (ecrit). 

If, for instance, a loose soil with n > ncrit is subjected to deviatory deformation (or vibratory 

impact), the pore volume decreases generating an excess pore water pressure condition. As a 

result inter-granular friction decreases – and that even to the extent that the soil may behave 

as a liquid. This condition is known as ‘soil liquefaction’ and is a well known phenomenon 

in Soil Mechanics. (See also Point 8). 

                                                                                                                                         

In the very same way, a loosely layered sandy (or sandy/silty) soil with lean clay content – 

and with pores containing under-consolidated clay material – may readily liquefy.  

A difference in this context can be that excess pore pressures in lean clays do not abate as 

quickly as is likely to be the case in the liquefaction of pure sandy/silty soils.  

In the current context, it is apt to refer to a short chapter (Article 17) in the 1967 Edition of 

the well-known textbook named ‘Soil Mechanics in Engineering Practice‘ by Terzaghi and 

Peck (Reference [3]), where different types of soil liquefaction are dealt with and well 

explained on five book pages. 
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Point 2.  As has been demonstrated in the mentioned RIVERBANK STABILITY REPORT 

(Ref.[10]), the Upper Clay layers in the Churchill River Valley show clear evidence of being 

of a highly sensitive nature. (Confer Nalcor soil data, presented on the IWLSC – Conference, 

(Quebec 2013), Reference [1] ).   

According to the list of Soil Properties in Ref. [1], the initial void ratios of the lean clayey 

soils generally range between values of e = 0.93  1.06. 

 

As an example, uniform sandy materials are according to Terzaghi & Peck, (Ref.[4]) 

considered to be loose already at void ratios of  0.85 – indicating that the soils in the North 

Spur are likely to be extremely loose.  

However, the critical void ratio is typically much lower (Ref. [3]) but can in any case easily 

be defined by relevant laboratory testing.  

The important requirement according to Equation 1 – in Point 8 below – is not likely to be 

satisfied for many of the soils in the North Spur. 

  

Furthermore, according to Nalcor, Ref. [1], the range of water contents (w = 21  41 %) 

exceed the liquid limits (wL or LL) = 19 39 %), which is another predicament indicating 

extreme soil sensitivity.   

 

The many landslides on the North Spur corroborate these data, also indicating very high 

sensitivity, i.e. of ‘quick clay’ character. 

 

Moreover, the Edward Island landslide, as well as the recent large ’2014 (or 2013 ?)  

Landslide’, downstream of Muskrat Falls’, show beyond any shadow of a doubt that the 

layers of the lean clayey soils have liquefied to the extent that pine trees, which formerly 

grew in ground close to the riverbank, have been displaced horizontally hundreds of metres 

during the slide events.  

 

This applies irrespective of whether these landslides are considered to have been triggered by 

an initial local slip or by instability of retrogressive or progressive nature.  

In other words, the lean clayey soils in the layer ‘Upper Cay 2’ have been so sensitive that 

they have virtually liquefied in the way quick clays tend to do.  

 

 

Point 3.  The degree of sensitivity has been discussed by James Gordon, and many others.  

In Scandinavia, the degree of sensitivity is measured as the ratio between the undisturbed 

cone shear strength (cu) and the cone strength (cr) of the same clay sample in a completely 

remoulded state. Hence, the sensitivity number is defined as St  = cu/cr.  

When the sensitivity (St) of clay is  > 50, the clay is denoted as ‘quick clay’. 

 

However, sensitivity is defined in various ways – e.g. by direct shear tests, compression tests 

or by tri-axial tests, in which cases notably lower values will be recorded for the same type 

of clay in comparison with the results from cone tests.   

 

According to Nalcor data in Ref. [1], sensitivities in the North Spur range from 2 to 28. 

Assuming that these numbers are not related to cone tests, a value of 28 indicates extremely 

high soil sensitivity. (Yet, even for cone testing, a value of 28 signifies high sensitivity.) 

 

In other words, when evaluating the degree of sensitivity of a soil, i.e. whether it is ‘quick’ or 

not, it is imperative to define what kind of sensitivity one is referring to.   
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Point 4.  Another important feature of the lean clays in the Churchill River valley is that the 

riverside clayey soil formations, at least in several areas, have remained stable over eons of 

time (millennia), and yet – when subjected to shear (or deviatory) deformation, due to 

riverside erosion, the soil material has lost its shear resistance to the effect that gigantic 

landslides of progressive or retrogressive character have taken place.  

 

The development of the river valley clearly indicates that the originally marine soil layers – 

although having been exposed to high vertical effective pressures during the postglacial era –

have nevertheless a tendency to liquefy when sheared because of lateral loading.    

 

This condition is, as explained in the Report, Ref. [13], related to the scarcity of clay 

substance in the mixed clayey soil, i.e. so called lean clay. As already stated in Point 1 

above, lean clays with a porous coarse-grained structure are prone to liquefy when subjected 

to deviatory deformation. 

 

As is also pointed out by Terzaghi & Peck, (Ref. [3]), void clay (as well as silt content) – 

although being in an under-consolidated state – contributes to preserving a looser granular 

structure over time than would be possible if the voids had only contained water.  

 

 

Point 5. Although a lot of general information is presented in Reference [1], hardly any data 

related to specific identifiable soil layers – such as e.g. the Upper Clays 1 & 2 – are 

presented. Thus, the precise and coherent soil properties applying to samples representative 

of critical layers are lacking in Ref. 1….. a condition that makes it impossible to perform any 

kind of reliable stability analysis based on soil parameters given in Ref. [1].  

 

There are, for example, no coherent values regarding any of the important soil properties 

such as: Initial void ratios, Critical void ratios, Water contents, Liquid Limits, Plastic Limits, 

Un-drained shear strength, Residual shear resistance, Sensitivity, Unit weight etc 

 

The mean values of many of these parameters have been defined in Ref. [1] but as Nalcor 

must be aware of, such mean values are of little use for stability analyses in a heterogeneous 

formation like the North spur. 

Lacking parameters are in particular:  

Tri-axial shear (deviatory) tests on undisturbed samples; 

Fast ‘direct shear tests’ on undisturbed soil  samples; 

 

Tests of this kind provide the complete stress/strain behaviour related to deviatory 

deformation. Such stress-deformation relationships are absolutely necessary in progressive 

failure analysis.  

In spite of the fact that the most crucial features of the soil layers in the Churchill River 

Valley are high porosity and high sensitivity, no test results of this kind have been presented 

in the Updated Nalcor, 21- July-20 14 Report, (Ref. [2])..    

  

 

Point 6. According to the diagram on Page 33 in the Nalcor report showing “Total head 

profiles in the spur at U/S “  WL = El. 39 m, the water pressure force acting on the COW 

above Elevation 25 m is roughly 1500 kN/m after stabilization. This corresponds to an 
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external, locally concentrated force over a width of 100 m of 150 000 kN/m = 15 000 metric 

tons/100 m.  

 

 Point 7.  On Page 9 in the Nalcor Report, under the heading “Safety factor against 

progressive failure”, the following statements are made: 

 

a)  Quotation: “…… calculations are calibrated locally with an existing slope”. 

 

Comment on quotation a):  

This may be a feasible approach in a slope formation consisting of uniform soil materials 

with truly plastic behaviour.  

However, in a very heterogeneous soil formation with highly sensitive soils, such an 

approach is not relevant. 

 

b)  Quotation: “…… Rotational, flow-slide, spread stability is calculated with a first 

movement at the toe. 

 

Comment on quotation b):  

This would of course be OK, provided the first movement really starts at the toe. This is 

however by no means certain. Confer next comment. 

  

c)  Quotation: “There is no evidence of downhill progressive failure landslide along the 

Churchill river valley.” 

 

Comments on quotation c)   

Firstly, this is a remarkably odd statement considering that there is not likely to exist any  

other condition along the valley, where a concentrated massive downhill force of 1500   

kN/m ( = 15 000 metric tons/100m)  has been designed to act locally in the soil formation at 

some distance from the riverside slope …..especially keeping in mind that the soils are very 

porous with a documented highly sensitive behaviour.  

 

Secondly, Nalcor claims that the two massive recent landslides in the valley are flow-slides. 

Unless the initial loading and soil conditions are accurately known, it is not possible to 

define or label the precise character of extensive landslides measuring many hundreds of 

metres in length. 

For instance, the Edward Island slide may possibly have been a serial flow-slide but it may 

just as well have been a forward progressive landslide triggered by an initial local riverside 

instability or by an ordinary slip-circular slide caused by temporary high water levels further 

inside the slope formation …. and -  may be - with contributing seismic activity.  

As far as is known to the writer, no detailed soil investigation had been made in the area 

before the landslide event. 

 

The very circumstance that the riverbank pine trees have been displaced horizontally almost 

half a kilometre does not indicate that they got there by suction or by flowing downhill.  

The fact that they must have been pushed there speaks for a slide, which in its main 

catastrophic phase was forward progressive. 

 

The same reasoning applies to the 2014 Landslide downstream of Muskrat Falls.  
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Exemplification of landslide complexity:  

The famous Rissa slide in Norway is by many geotechnical engineers thought of as a flow-

slide – largely because of the famous film documenting the final flow-slide phase of the 

landslide. 

Yet, as was demonstrated in the writers Power Point Presentation in Saint Johns, (2013), 

(Ref. [12]), the Rissa landslide began as a minor ordinary slip-circular slide due to a fill on 

the bank of the adjacent fjord. The slide then propagated uphill as a serial flow-slide …that 

then triggered two consecutive extensive downhill progressive landslides. Then again, as is 

often the case, sliding continued as a series of flow-slides, whereby the soil debris kept on 

flowing downhill and disappeared into the depths of the fjord as illustrated by the said film. 

 

Conclusion: The Updated Nalcor July 2014 Report contains no evidence actually proving 

that downhill progressive landslides cannot take place in the Churchill River Valley. 

 

d)  Quotation: “Counter measure will be in place to control … “Human triggering” 

 

Comment on quotation d):  

The Updated Nalcor Report contains no information indicating how, and what sort of 

“Human triggering” that will be implemented in order to prevent flow-slides, massive 

retrogressive or progressive landslides in the very heterogeneous and highly sensitive soil 

formation constituting the North Spur.  

Slides in sensitive soils are normally unpredictable and very sudden – especially if the 

innately sensitive properties of the soil materials are overlooked. 

  

 

Point 8.  Stability analysis in the Updated Nalcor Report (21- July- 2014) is – as far as can 

be concluded – based on frictional resistance and on the hydraulic head profiles shown on 

pages 32 and  33.    

As no shear stress /strain (shear deformation) relationships are presented, it seems evident 

that the stability analyses are based on the Plastic Limit Equilibrium (PLE or LEM) mode. 

 

As has already been stated in the beginning of this report, frictional resistance is generally a 

very reliable stabilizing resistance parameter. There are, however, very important conditions 

that must be fulfilled for this rule to be valid:   

a)  In cases, where the additional lateral load – causing shear deformation – is static, it is 

imperative that the current porosity value (n) is equal (or less) than the critical porosity 

(ncrit)  

i.e.  n < ncrit  or in terms of void ratio (e)                                            ………… Equ. 1a 

       e < ecrit                                                                                                                               …………  Equ. 1b                     

where e and n relate to each other as e = n /(1-n) or  n = e/(1+ e) 

 

If the condition according to Equation 1a (or 1b) is not fulfilled, the application of even static 

loading may reduce frictional resistance, even  to the extent that liquefaction occurs. 

 

b)  However, in cases, where the additional stresses change signs as in vibratory impact –  

i.e. when the axial stresses alternate between  +Δσx, (or  +Δσy) – liquefaction can readily 

occur even if the condition according to Equations 1 is fulfilled.  

The same applies to deviatory deformation, in which case the additional vibratory shear 

stress alternates between + Δτ x,y .- i,.e. so called stress-strain reversals  

(Cf  Terzaghi & Peck, Ref. [3].)  
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A vital question in this context:  Have the effects of vibratory impact of this kind been 

considered in the Seismic Analysis by Atkinson?  

Dynamic impact always calls for a higher degree of compaction – i.e. a condition that should 

be based on relevant testing procedures. 

 

It is therefore important that all test results related to the porosity of soil layers in the North 

Spur are made known to GRK.  

The following data are of particular interest:  

1a)  The in situ void ratios of loose sand and mixed silty sand layers.  

1b)  The critical void ratios of these sands and mixed silty sands, obtained by direct shear  

 tests on undisturbed soil samples. 

 

2a)  The in situ void ratios of the coarse-grained structure of lean clayey soils.   

2b)  Shear tests on undisturbed samples of lean clay layers and diagrams showing 

        the complete deviatory stress/deformation) relationship. 

 

It may be noted that, when evaluating the results from the testing of initial void ratios, the 

difficulty of getting undisturbed soil samples must be recognized. The in situ void volume of   

materials with high porosity is easily affected by the sampling procedures.  

 

 

 

Stig Bernander 
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FOREWORD

The following comments should be regarded as complementary to the previous reports by the
undersigned dated 14 October 2015 [13] and 7 January 2016 [14] respectively, concerning the
Nalcor Report to the Independent Engineer on the Lower Churchill Project, North Spur Updated,
21-JUL-2014 [2a].

The October 2015 report by this Reviewer was prepared on behalf of the Grand Riverkeeper Inc.
and titled Lower Churchill River Riverbank Stability Report [13].

The later report, dated 7 January 2016, was titled Further Comments on the Updated Nalcor 21-
JUL -2014 Report [14].

When the January 7 report was written, the undersigned had not yet had the possibility to
review the new Nalcor/SNC- Lavalin report of 21 December 2015 titled Engineering Report,
North Spur Stabilization Works, Progressive Failure Study [2b].

Having now reviewed the 21 December 2015 ENGINEERING REPORT, the undersigned author finds
that his previous comments on the stability of the Muskrat Falls dam containment, especially its
North Spur, remain relevant.

The current review is largely focused on specific issues that have been presented more fully in
this Nalcor/SNC-Lavalin ENGINEERING REPORT [2b]. References will also be made to both of this
Reviewer’s earlier comments.
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EXECUTIVE SUMMARY

The stability of the North Spur as a dam containment structure is a complicated issue.

The criticism of the ENGINEERING REPORT of 21 December 2015, presented below by this Reviewer,
does not constitute any prediction of likely or certain North Spur failure due to impoundment,
other man-made stress, or seismic action.

However, the accounts of stability analyses in the REPORT fail to address the effects of important
aspects of basic geotechnical design and of modern research in the field.

 The REPORT appears to rely exclusively on the assumption that an ideal elastic-plastic
stress-strain relation is applicable to the sensitive porous soils in the North Spur.

 The geotechnical data for the North Spur presented in the REPORT do not suggest such an
elastic-plastic physical relationship.

Thus this Reviewer finds such an assumption to be highly questionable. Further:

 The REPORT does not present any results from stress/strain deformation tests, or any
other evidence, that might indicate that the ideal elastic-plastic relationship is likely to
be valid. The Report does not, for instance, address the decisive effects on the shear
resistance of a soil due to the relation between the in-situ porosity of a soil and its
critical porosity.

 Considering the initial emphasis in the REPORT on the possibility of progressive failure,
stress-deformation data are absolutely indispensable for predicting landslide hazard in
long slopes with sensitive soils.

 Instead of such data, however, the REPORT offers the output of a computer model that
extrapolates from static conditions and long-term percolation.

 The REPORT makes no mention of seismic events, either historical or potential.

 Nor does the REPORT deal with the drastic effects on residual shear strength related to
stress/strain reversals in porous silty/sandy soils (and in granular soils with very poor clay
content).

 The REPORT gives no valid explanation for studying only horizontal failure planes in the
North Spur when investigating the effects of the enormous water pressure that will be
permanently imposed by the impoundment of water above the Muskrat Falls dam.

Hence it is this Reviewer’s assessment that safety factors based on this stress-strain model,
including those offered in the REPORT, are not well founded and cannot be accepted without
further supporting evidence.

This Reviewer strongly recommends a dynamic testing procedure for accurately assessing the
porosity of potentially sensitive North Spur soils.

The most reliable way to investigate the porosity of loose soils in-situ is by subjecting them to
heavy vibration and assessing the resulting changes. The Reviewer therefore recommends that
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investigators drive a series of piles in a concerted manner into the North Spur east of the cut-
off-wall and measure the resulting soil settlement.

This kind of dynamic testing makes it possible to estimate the reliability of the computer model
employed in the REPORT. If the resulting safety factors are found to be significantly less, then
further remedial actions can be planned and carried out in a timely fashion.

Additional mitigatory measures would involve the compaction of the under-consolidated silty
clay soils of the North Spur to the point that they are no longer vulnerable to liquefaction under
dynamic loading conditions.

In view of the catastrophe that would envelop downstream communities in the event of a
breach in the North Spur, these issues deserve the most careful scrutiny and decisive action by
those entrusted with leadership of the Project.

Gothenburg, 15 September 2016
Stig Bernander
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1. GENERAL CONSIDERATIONS

The Nalcor/SNC-Lavalin ENGINEERING REPORT is a comprehensive and from many points of view a
thorough geotechnical study based on conventional mid-20th century modes of analysis in Soil
Mechanics, many of which this writer has supported when used in appropriate settings.

For instance, in-situ conditions based on long-term stress change, long-lasting hydrology, or
extremely slow rates of additional change of loading may normally be well analysed using the
conventional procedures generally applied in the ENGINEERING REPORT, which from this point and
on will be referred to as the REPORT or Reference 2b.*

The author of the current comments, herein named the “Reviewer”, will focus on items and
conditions that may question or undermine the reliability of studies based on conventional
modes of stability analysis — such as the Limit Equilibrium Mode (denoted LEM in the REPORT).

According to the basic assumptions stated on pages 34 and 35 of the REPORT, the “elastic-
plastic” stress-strain relationship is at the heart of the failure analyses that it describes.

A condition of decisive importance regarding the validity of LEM analyses is the relation
between the in-situ porosity (n) of a soil layer and what in Soil Mechanics is defined as the

critical soil porosity (ncrit). This relationship, and how it applies to the types of soil in the North
Spur, is treated in some detail.

If LEM analysis is found to be not appropriate, what other methodologies may be used to
estimate the risk of slope failure? These Comments then turn to recent research in progressive
failure in long slopes and how the risk of such failure may be assessed with several new
technologies.

*
Note: By doing so, the list of references in the current report is consistent with the corresponding list in the

author’s 7 January 2016 Comments. [14]
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2. ON PROGRESSIVE FAILURE DEVELOPMENT

In modern research on landslide hazards, the geotechnical phenomenon denoted “progressive
failure” cannot in any way be either predicted or precluded by analyses based on the Limit
Equilibrium Mode (LEM). This is due to the fact that progressive failure simply cannot take place
in materials with stress-strain (deformation) relationships of the kind called elastic-plastic in the
REPORT — i.e. materials being nearly perfectly plastic under large deformations. (Refer to
Sections 5 and 6 of Reference [13], where these issues are treated in more detail).

Under what conditions can progressive failure occur? Such landslides occur in soils in which
powerful deformations are succeeded by a drastic reduction of shear resistance, as exemplified
by curves C and D in Figure 2.1. (In contrast, elastic-plastic soils deform linearly with increasing
shear stress, as in curve A). Further, as is highlighted in Sections 5.3 and 5.4, serious loss of
residual shear resistance — liquefaction — may also result from deviatory deformation or from
reversals of stress and deformation that are independent of current stress levels.

Figure 2.1. Deviatory stress-strain (deformation) relationships of different kinds

A) Elastic-plastic (LEM) relationship

B) Long-term perfectly drained (LEM) condition

C) Sensitive undrained condition

D) Liquefaction, e.g. due to deviatory deformation in loose soils and sensitive clays

Hence, in materials with properties like those in cases (A) and (B) in Figure 2.1, progressive
failure is simply not possible, whereas in cases (C) and (D) progressive failure may be a likely
event.

Both forward progressive (downhill) and retrogressive (uphill with lateral spread) failures can be
triggered by deviatory shear deformation caused by an external load or simply by reversals of
stress and strain. These additional load effects may be due to a variety of causes, including
human activity, hydrological change, water-filled deep cracks (due to ongoing creep
movement), erosion, vibration, or seismic action.
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A surprising feature in many extensive progressive landslides is that the slope studied may have
remained stable for centuries or millennia, and yet, a seemingly insignificant local load has
managed to destabilize a wide area, measuring hundreds of metres in width and length.
Landslides of this kind are frequent in Canada, Scandinavia, in post-glacial regions in Europe,
and in tropical areas with laterite clays.

The huge landslide at Edwards Island in 2010 — in the Churchill River Valley upstream from
Muskrat Falls — is a striking example. In this case, the sensitivity-generating landslide hazard is
related to the high porosity of the soil layers, which is an extreme but typical feature common
for the soils in the Churchill River Valley.*

As has been emphasized in previous reviews [13,14], the crucial issue in this context is:

Do the stress-strain curves of the soils in the North Spur correspond to curves A and B
in Figure 2.1, or is it possible that deformations due to additional loading may result in
stress-strain (deformation) relationships such as those of curves C or D?

The formation and ongoing geological development of the Churchill River Valley render clear
evidence that the properties of its marine sediments have not been of an elastic-plastic nature
in the past — and nor will they become plastic in the future without extraordinary remedial
measures.

The progressive failure issue is further dealt with in Sections 5.3, 5.4, and 6.1 below.

*
AMEC Earth & Environmental. (2011) “Geotechnical Investigation: Edwards Island Landslide, Churchill River,

Labrador”. Contract #LC-EV-007. [15]
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3. ABOUT CRITICAL VOID RATIO AND CRITICAL POROSITY IN SOIL SENSITIVITY

3.1 The Stratified Drift of the North Spur — the Upper Silty Clays

The values of Liquid Limits, Unit Weights and Void Ratios shown in Table 1 below are valid for
soils within the ranges of data as presented in Table 2-1 on page 17 of the Nalcor/SNC-Lavalin
REPORT.

Table 1. Types of soil in the Stratified Drift, the properties of which range between the values given
in Table 2-1 for the Upper Silty Clays. (REPORT, page 17).

Type of soil
Water

content
Plastic
Limit

Liquidity
Index

Corresponding
Liquid Limit

Unit
weight

Void
ratio

Porosity

Stratified w PL LI LL γw e n

Drift % % % kN/m3

Type 1a 43 13 2.8 38.8 17.71 1.14 0.53

Type 1b 43 15 2.0 36.5 17.71 1.14 0.53

Type 1c 43 25 1.3 40.6 17.71 1.14 0.53

Type 2a 35 13 2.8 35.9 18.56 0.93 0.48

Type 2b 35 15 2.0 32.5 18.56 0.93 0.48

Type 2c 35 25 1.3 34.4 18.56 0.93 0.48

Type 3a 30 13 2.8 34.1 19.19 0.80 0.44

Type 3b 30 17 2.0 32.0 19.19 0.80 0.44

Type 3c 30 25 1.3 30.6 19.19 0.80 0.44

Mean values 31 19 1.3 29.5 19.06 0.82 0.45

Relationships

w = n/[(1-n)×γR] = e/γR n = e/(1+e) e = n/(1-n) w = water content

Density, H2O-saturated γw = (w+1)/(w+1×γH20 /γR) γH20 = Density of water = 10 kN/m3

or: γw = n∙γH20 + (1-n)×γR kN/m3

Dry density γd = (1-n) γR kN/m3

Assumed density of
rock material γR = 26.5 kN/m3

For comparison, see Terzaghi and Peck [4], Article 6, Table 6.3, “Index Properties of Soils”. The
values shown in Table 1a below are typical of sands:
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Table 1a. From Terzaghi and Peck [4]

Type of soil Porosity Void ratio Water content
Water-saturated

unit weight

n e w % γ (kN/m3)

Uniform sand, loose 0.46 0.85 32 18.9

Uniform sand, dense 0.34 0.51 19 20.9

Mix-grained sand, loose 0.40 0.67 25 19.9

Mix-grained sand, dense 0.30 0.43 16 21.6

As can be readily concluded by comparison between Table 1 and Table 1a, all values of initial
void ratio, porosity, and water content for the Type 1 and Type 2 soils indicate a looser
composition than even those attributed to loose sands by Terzaghi-Peck. The unit weights of
these soils, i.e. 17.7 to 18.6 kN/m3, are all below those of a loose uniform sand, confirming a
loose composition. According to the REPORT, the Upper Clays belong to the Stratified Drift, which
is referred to as a “heterogeneous mix of clays, silts and sands ...”

The unit weights of the Type 3 soils in Table 1 also fall below the Terzaghi-Peck value for loose
mix-grained soils, as 19.2 kN/m3 is less than 19.9 kN/m3. The initial void ratios ranging between
0.81 and 0.90 are all in excess of 0.67, values that apply to loose mix-grained sand.

Furthermore, the water content for all of the Type 1 and Type 2 soils, including the average
value, exceeds the Liquid Limit, a condition which in Soil Mechanics is indicative of high
sensitivity.

Conclusion. The soil properties in Table 1 are consistent with the very specific formation of the
Churchill River Valley in the past and its ongoing development. These soils tend to be loose and
non-compacted, and they have been susceptible to repeated landslides over a long period of
time. The North Spur itself has scars of at least nine significant slides. For the most recent large
slide in the North Spur, in 1978, Nalcor’s own engineers found that the silty clay layer had
developed multiple failure surfaces and liquefied over a long lateral distance.*

3.2 The Lower Clay Layer

This section deals with a study (similar to the one in Section 3.1) regarding the soil properties of
the Lower Clay layer. In Table 2 below, the values of liquid limits, unit weights, and void ratios
are all applicable to soils with Water Content, Plastic Limit, and Liquidity Index as presented in
Table 2-2 of the REPORT.

*
SNC-Lavalin. (30 January 2016) “Lower Churchill Project. North Spur Stabilization Works – Design Report”. Nalcor

Doc. No. MFA-SN-CD-2800-GT-RP-0004-01. Pages 145–147. [16]
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Table 2. Types of soil in the Lower Clay formation, the properties of which range within the values
of soil data in Table 2-2 for Lower Clay. (REPORT, page 19).

Type of Lower
Marine Clay

Water
content

w %

Plastic
limit
PL %

Liquidity
index

LI

Correspond.
Liquid limit

LL %

Unit
weight
kN/m3

Void
ratio

e

Porosity
n

Lower cl Ia 45 13 2.0 35.5 17.53 1.19 0.54

Lower cl Ib 45 15 1.5 37.5 17.53 1.19 0.54

Lower cl Ic 45 17 1.0 45.0 17.53 1.19 0.54

Lower cl IIa 35 11 2.0 28.5 18.56 0.93 0.48

Lower cl IIb 35 13 1.5 29.8 18.56 0.93 0.48

Lower cl II c 35 15 0.9 37.4 18.56 0.93 0.48

Lower cl IIIa 30 10 2.0 25.0 19.19 0.80 0.44

Lower cl IIIb 30 13 1.5 26.5 19.19 0.80 0.44

Lower cl III c 30 16 0.9 31.7 19.19 0.80 0.44

Mean Values 29 21 0.6 39.9 19.33 0.77 0.43

Table 2 indicates that almost all values of the water content significantly exceed the
corresponding values for the Liquid Limit (LL), indicating a high sensitivity. Yet, the mean value
of the Liquidity Index is 0.6 (i.e. below 1.0). However, although this may appear to be a
reassuring condition, the fact that LL varies widely between 0.1 and 2.0 indicates that layers
with high sensitivity also occur in the Lower Clay formation — a fact that allows the possibility of
developing a progressive failure.

(Note that a mean value in this context simply denotes the mean result from a number of tested
soil samples. It does not necessarily represent the average resistance or the mean sensitivity of
the soil mass of interest).

Finally, there is a relationship between quick clay and the desalination of marine sediments due
to the percolation of fresh water. This is a well-known long-term risk factor for the development
of quick clay; in the North Spur this risk is associated with the Lower Clay layer. The effects of
such water seepage may have to be considered at a later date, but at the present time it is the
high porosity of the soils in the Stratified Drift that presents the greatest danger.
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4. SHEAR STRENGTH — DEPENDENCE ON DIVERSE EFFECTS

A basic principle of analysis in Soil Mechanics is that the values of peak shear strength, residual
shear resistance, and stress-strain (deformation) relations are not fixed or invariable properties
of the tested soils. Rather, they remain dependent on various internal and external factors that
are of particular concern when the possibility of progressive failure is considered.

Several of these parameters are rate-related, because they are highly dependent on:

 the rates of load application and the rates of stress change during landslide development;

 the rates of dissipation of excess pore pressure, e.g. the thickness and permeability of the
soil layers neighbouring the developing failure surface.

Other important factors include:

 the relationship between current porosity (n) and the value of critical porosity (ncrit);

 the over-consolidation ratio (OCR); and

 whether or not a failure surface (or shear band) has already developed.

According to the REPORT, the peak shear strengths of the North Spur soils have largely been
measured by vane tests. In this context, it is of interest to refer to the diagram in Figure 4.1
published by Aas, 1966 [8a]. The diagram shows how peak strength and residual shear
resistance may relate to the angle of torsion and the speed at which the vane is turned.

Figure 4.1. Stress-strain (deformation) curves for consolidated, undrained vane tests at different
strain rates (Aas, 1966). Legend: brott = failure, Vridning = torsion, dygn = day, vecka = week,
grader = degrees.
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Figure 4.2 illustrates a corresponding relationship found in direct shear laboratory tests
between peak and residual shear resistances at different rates of load application. (Note that
the residual shear resistance in the triggering phase of a possible progressive failure may not be
identical to the remoulded undrained shear strength). The right-hand graph demonstrates
another important effect, namely the impact of the current over-consolidation ratio (OCR).

Figure 4.2. Typical test results from consolidated undrained direct shear tests on a normally
consolidated Swedish clay. Note that deformation on the horizontal axis is represented both in
terms of angular strain and slip displacement in millimetres.*

In this regard the Reviewer finds it anomalous that the REPORT does not contain diagrams of the
stress-strain (deformation) relations for soil samples that are typical of identifiable critical layers
in the Stratified Drift.

This Reviewer believes that, even now, Nalcor/SNC-Lavalin must present such diagrams. These
are not likely to correspond to the “elastic-plastic” relations that they have generally applied.

From a safety point of view, the above soil data constitute an unclear and unsatisfactory
situation, since sensitivity, low residual shear resistance, and possible subsequent liquefaction
are the preconditions for potential progressive failure development.

Conclusion. Without relevant stress-strain diagrams, it is not possible to have a realistic
understanding of the safety factors with regard to possible progressive failure development.
This is a striking omission in the REPORT.

* It may be noted that the clay samples in these tests were confined by means of mutually unconnected
horizontal rings, thereby avoiding the effect on the test results related to the rubber enclosure that is
normally used in laboratory tests of this kind. Bernander and Svensk, 1985 [9].
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5. ADDITIONAL COMMENTS ON THE ANALYSES INTERPRETED FROM THE

NALCOR/SNC-LAVALIN ENGINEERING REPORT

5.1 About failure surfaces

In the REPORT, stress distribution, possible slope failures, and safety factors are predicated on:

... shear stresses along various horizontal surfaces passing through the two Upper
Clay Layers and through the Lower Clay.

Thus the soil models used for stability and stress distribution analyses are based on perfectly
horizontal stratification. This is a questionable assumption for a number of reasons.

The interpreted soil layer stratigraphy before and after the 2013 soil investigations —presented
at the IWLSC Conference, 2013 [1] — as well as the interpreted stratigraphy of other sections
through the North Spur, are heterogeneous and very different from one another. This condition
indicates that the sedimentary structure of the North Spur remains highly variable and uncertain,
implying that the horizontal stratigraphy adopted in the stability analyses does not correspond
very closely with actual conditions.

The REPORT does not present any rational justification for basing its Numerical Finite Element
analyses on a macro soil model with perfectly horizontal stratification.

Figure 5.1. Potential failure planes (I and II) possibly leading to progressive failure development.

In Soil Mechanics, there exists no rule stating that developing failure surfaces are even likely to
be horizontal. This is true irrespective of whether the ground surface above is sloping or not.

A forward-acting failure development near the cut-off-wall (COW) may, for instance, initially
progress along the sedimentary orientation in the Stratified Drift, but may just as well develop
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more steeply through the Upper Clay and then progress further into sensitive layers in the
Lower Clay formation. See, for example, the potential failure planes I and II in Figure 5.1.

According to Figure 8 in posters at the IWLSE Conference 2013 [1], the lower contour of Upper
Clay 2 slopes about 3 metres along the length coordinate x ≈ 200 m (near the COW) to x ≈ 350 
m. This is an inclination of about 2%.

As the thickness of the Upper Clay layer near the COW is about 5 metres, the slope of a linear
potential failure surface increases to 8/150 = 5.3%. If the shape of the failure plane is assumed
to be parabolic, then the slope of the failure surface close to the COW will be some 10.6%. The
shear stress (τ) due to vertical stress over such an inclination is in the order of

τ = σ’
v×sin 0.106.

Considering that γw = n + (1-n) γR, including the weight of percolating pore water above water
level WL = +39, the vertical effective stress (σ’

v) may be roughly estimated to:

σ’
v ≈ (59-46)×[0.36×10 + (1-0.36)×26.5] + (46-39)×[0.41×10 + (1-0.41)×26.5] +

+ (39-23)×[0.48×10 + (1-0.48)×26.5-1×10] =

= 13 × 20.56 + 7 × 19.74 + 16 × (17.98 - 10) = 267.3 + 138.2 + 127.7 =

= 553.2 kN/m2

Hence the shear stress (τ) at a beginning failure plane of parabolic shape may amount to

τ = σ’
v × sin 0.106 = 553.2 × 0.1058 ≈ 58.5 kN/m2.

The impoundment from water level WL= +17 m to WL = +39 m represents a horizontal force
above level +17 of Hw ≈ 2420 kN/m. 

Assuming that the length of a triggering zone for progressive failure formation is taken to be 50 m
(by experience a reasonable assumption), then the mean shear stress roughly amounts to

Δτ = 2420 ÷ 50 = 48.4 kN/m2.

The maximum value is likely to be about 50% higher than the average value, i.e.

Δτmax ≈ 1.50 × 48.4 = 72.6 kN/m2.

Hence, the total local shear stress could be in the order of 72.6 + 58.6 = 131.4 kN/m2. Note that
this value is higher than almost all the intact undrained shear strength measurements,
su = 35 to 135 kN/m2, shown in Table 2-1 of the REPORT.

Nor are the corresponding shear strengths very reassuring for the Lower Clay: su = 53–200
kN/m2 (Table 2-2), as steeper failure surfaces could well develop in this clay formation.

Conclusion. The REPORT presents no valid justification for presuming only horizontal failure
planes through soil layers in the North Spur. The rough analysis made above does not claim to
render a precise account of the risk of forward (downhill) progressive failure, but it does
demonstrate the need to perform a thorough study of failure planes other than horizontal ones.
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5.2 On safety factors based on “elastic-plastic” LEM analysis

Section 3.2.3 of the REPORT cites a prominent Québec scientist:

Conventional limit equilibrium methods, applied to progressive landslides, generally
give factors of safety for spreads well above unity and therefore cannot explain
observed ground movements (Locat 2013).*

The only way the Reviewer can interpret this statement is that Dr Locat is sceptical of the
validity of using “conventional limit equilibrium methods” (LEM) for predicting the stability
conditions in the North Spur — and if so she is quite right. The REPORT does, in fact, fail to show
that the stress-strain properties necessary for LEM analysis to be valid are present in the porous
soils of the North Spur.

The same considerations apply to progressive landslides in Scandinavia. None of the extensive
landslides known to this Reviewer were predicted — or could even be explained in hindsight
— by using stability analyses based on the conventional elastic-plastic LEM mode.

In this respect, all analyses made by the Reviewer, e.g. in Refs. [5,6,7], have clearly shown that
as soon as the length of a potential landslide exceeds 50–80 metres, depending to some extent
on the depth of the failure plane, safety factors based on LEM become seriously unreliable.
Indeed, the dynamic changes during a progressive failure are the hallmark of this phenomenon.

Conclusion. The Reviewer is compelled to doubt the reliability of safety factors in the downhill
stability analyses of the eastern slope as shown in Figure 5-2 of the REPORT. Unless they can be
supported by additional modes of testing, these safety estimates should not be accepted as
well-founded and relevant to the physical situation of the North Spur.

5.3 Effects of seismic activity

According to the Nalcor Report to the Independent Engineer, 2014 [2a], the potential effects of
earthquakes have been investigated.

A crucially important question becomes: Have the seismic analyses also been based on elastic-
plastic LEM relations? Or have they been based on the sensitive, brittle properties of loose silty
sands and loose mixed layers with little clay content, as are found in the Stratified Drift?

As engineers are well aware, seismic actions on structures made of elastic-plastic materials (of
the kind assumed in the REPORT) are normally quite harmless. However, If the affected
structures consist of brittle material, such as brickwork without tough reinforcement,
catastrophic events can and do take place. (See, for example, Section 2 of this Reviewer’s
Riverbank Stability Report, 2015 [13]).

The crucial questions in this context are:

*
Locat A, Jostad HP, Leroueil S. (2013) “Numerical modeling of progressive failure and its implication to spreads in

sensitive clays”. Canadian Geotechnical Journal, 50(9), pp. 961–978. [17]
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 Are the materials involved highly stressed, i.e. close to peak resistance or exerted to
significant strain or deformation irrespective of absolute stress levels?

 Are the soils highly sensitive or prone to liquefy, the vital issue being whether the in-situ
porosities of the soil layers are higher than the critical porosity?

 Is there any potential risk of reversals of stress and strain, e.g. due to seismic effects?

In this context, it is worrying that the REPORT offers no test results showing the impact on
residual shear resistance of deviatory deformation and of stress /strain reversals.

As has already been touched upon, the porosity of a soil may be of crucial importance. If the
current porosity of a soil exceeds its critical value, n > ncrit, then the soil is prone to massive loss
of shear resistance or to liquefaction when sheared or exposed to stress-strain reversals related
to vibration, pile driving, seismic activity, etc. (See Terzaghi-Peck, Article 17 [3] and the following
extracts from that article).

Spontaneous Liquefaction and True Quicksands



15

The succeeding section of Article 17 deals with “Liquefaction under Reversals of Stress and
Strain”, which is a subject of particular relevance with regard to seismic effects. The soil data in
the REPORT, the specific slide-prone character of the North Spur, and the unique postglacial
development of the Churchill River Valley all strongly indicate the risk of soil porosities being
generally too high to be safe from seismic risk, i.e. n > ncrit.

If the issue has not yet been researched, it should be a priority to find out whether the 2010
slide at Edwards Island, the 2013 slide downstream of Muskrat Falls, or the 1978 North Spur
slide were related to any concurrent seismic activity. If the answer is yes, then the proposed
stabilization works may require radical revision.

Conclusion. The computer model of a “design seismic event” carried out by Nalcor’s engineering
team may be of little relevance if it is based on the assumption that North Spur soils are elastic-
plastic in nature. Further, the current REPORT offers no data on the behaviour of these soils
when subjected to the types of stress typical of seismic events.

5.4 Stress analysis based on seepage

In the analyses of steady-state conditions — such as in-situ stress distribution — this type of
drained soil analysis may be useful.

However, stability criteria and safety factors cannot be based on effective stress seepage
analysis in the context of the fast development of progressive failure in deformation-softening
soils, because in this case total stress conditions apply.

During the rapid stress changes in the different phases of progressive failure, the water content
of the soil is trapped in the pore system, and there is no time for water to seep away. Thus,
when transient conditions or the effects of additional loads are investigated in highly sensitive
soil formations, effective stress distribution based on long-term seepage has little relevance.
Similarly, although finger drains may be useful for promoting drained conditions, they constitute
no effective guarantee against progressive failure development.

Although frictional resistance is generally a reliable stabilizing parameter, it must be emphasized
that the crucially necessary condition for this physical law to hold true is the fulfillment of
Equation 1a (or Equation 1b) below.

a) Even in cases, where the additional load — causing shear deformation — is of a static
nature, it is imperative that the in-situ porosity (n) does not exceed the critical porosity
(ncrit):

n < ncrit Equation 1a

or in terms of void ratio (e)

e < ecrit Equation 1b

where n and e relate to one another as

e = n/(1-n) or n = e/(1+e)
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If the condition specified by Equation 1a or Equation 1b is not fulfilled, even a slow increase in
static load — or deviatory deformation — may reduce frictional resistance to the extent that
liquefaction occurs.

b) Furthermore, when the additional stresses involve reversal changes of stress or strain —
when shear stresses alternate between + Δτ x,y or axial stresses alternate between +Δσx or
+Δσy — then liquefaction can occur even if the conditions specified by Equations 1a and
1b are fulfilled. The porosity, in fact, has to be somewhat less than its critical value. (See
Terzaghi and Peck [3]).

As indicated below in Section 6.5, finger drains constitute no valid guarantee against failure due
to stress-strain reversals from seismic action.

5.5 General considerations on progressive failure analysis

Page 8 of the REPORT, lines 9 to 22, is indicative of the Nalcor engineering team’s conception of
progressive landslide failure. At the same time it reveals that the team is not well acquainted
with the research in the field of Soil Mechanics that has occurred during the past 50 years, and
especially since the turn of the century.

Lines 9–15 of Page 8 in the REPORT run as follows:

Although there is much to be said about this passage, the Reviewer will focus on three points:

 It is true that, to date, there are still no general, official prescriptions concerning
progressive failure analysis, but this is mainly due to the intricacy of the problem. The
issue often relates to complex geological features and stress-strain (deformation)
properties that are often not easy to determine in a generally applicable way. Yet this does
not mean that it is an impossible task to define and analyse the problem.

 Furthermore, the difficulty of doing so cannot be a valid reason for neglecting the issue.

 It is a common misconception that progressive failure analysis can be investigated only in
hindsight, i.e. by back-analysis of a near-identical landslide that has already occurred. This
approach is misleading from several points of view.

For instance, practically all established and usable values of shear strength of clays have, since
early in the 20th century, been determined by both back analyses of smaller slides and by
applying differing methods of soil investigation, such as tests involving direct shear,
compression, fall cone, and triaxial compression or vane boring in-situ. The results of these
various procedures are rate-dependent and must therefore be carried out at specified rates of
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load application in order to determine the actual shear strength of the soil. (See for instance
Figure 4.1 in Section 4 above).

In very much the same way, applicable large strain (deformation) resistance values can be
derived both from laboratory testing at relevant rates of loading and from back-analyses of
extensive landslides in similar — but not necessarily identical — soil conditions.

Moreover, analyses of progressive failure — including the quantification of the final extent
(the degree of disaster) of a number of slides — have shown that the residual shear resistance
has often been only about 30% of the maximum shear stress. It is obviously imprudent not to
apply this information when predicting slope stability under similar conditions.

Thus, examination of dynamic changes in shear resistance offers a safer prediction model than
using elastic-plastic LEM procedures, which are known to be unreliable for potentially large
landslides (> 50 to 70 metres) under sensitive soil conditions. (See Figure 5.2 below).

In addition, it is crucial to be aware that both progressive and retrogressive landslides develop
in several phases at distinctly different rates of loading or of changes in stress. The properties of
the stress-strain parameters occurring in these phases are normally very different. For instance,
the values of both the peak shear stress and the residual resistance — which govern the
triggering phase — are quite different from those acting in the late phase which determine the
final extent of an extensive landslide. (Cf Figure 4.1).

Studies by this Reviewer [5,6,7] demonstrate how the risk of a progressive landslide can be
estimated from basic geotechnical parameters. In this context it may be noted that SKANSKA Ltd
already in 1983–1985 made seven predictive stability studies of extensive slopes in western
Sweden, all on the basis of progressive failure formation. Four of the studies were made on
behalf of the Swedish Geotechnical Institute and three in the course of ongoing Skanska Ltd
projects. In only two of the seven projects were the safety factors with respect to the triggering
load found to be insufficient, thus necessitating remedial measures.

Similarly, recent literature on progressive landslide failure has been published by a number of
authors and institutes such as Locat (Québec), Picarelli et al. (Italy), NGI (Oslo), NTNU
(Trondheim, Norway), Luleå Technical University (Sweden), and Skanska Ltd, (Sweden). Further,
Puzrin, Germanovitch, Saurer, et al. (Switzerland) have published several reports on slide
propagation in submerged slopes.

Conclusion. Contrary to the SNC-Lavalin statement cited above, reasonable prediction of
progressive slope failure can be made without reference to a previous landslide under identical
circumstances. Analytical difficulty cannot be cited as a justifiable reason for not carrying out
studies of possible stability problems in the North Spur.

5.6 Maximum potential landslide extension using LEM

An interesting example of false prediction of slope stability by conventional LEM analysis was
established in the study of the landslide at Bekkelaget, Norway by Aas, 1983 [8b]. (See Figures
5.2 and 5.3 below). The Bekkelaget landslide was also referred to and commented on by this
Reviewer [5,7].
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Figure 5.2. The Bekkelaget landslide, Norway. Analysis by Aas (1983). The odd circumstance to be
noted here is that the slide actually developed along the 200-metre-long failure surface with the
highest safety factor, FS =1.32, and not along the short failure surface with an insufficient safety
factor of FS = 0.87, i.e. less than 1.00.

Investigations by the Reviewer have shown that, when slip circles in sensitive soils extend more
than 50–70 metres, safety factors based on LEM analysis may become seriously unreliable.

Further examples given in Ref. [7] show clearly that, depending on various parameters (such as
geometry, time, stress-strain relationships, etc.), safety factors based on progressive failure
analysis may be as low as 25% of the corresponding safety factors calculated using LEM analysis.

In this context we may turn to Nalcor’s analysis of the downstream (eastern) slope of the North
Spur. A cross-section of the North Spur is diagrammed in Figures 5-2a and 5-2b, page 38 of the
REPORT. Note that the length of the chord of the slip circles shown in the figures extends nearly
200 metres — a clear indication that LEM methods for assessing safety are of limited usefulness.
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Figure 5.3. Relationships between safety factors determined by Progressive Failure Analysis and elastic-plastic LEM analysis. Note especially
the column with a red heading [7].
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Conclusion. The data presented demonstrate the inadequacy of Limit Equilibrium Mode analysis
to calculate safety factors for the North Spur. The Nalcor authors have not yet reported a true
Progressive Failure Analysis, and there is no indication that any such work has been carried out.

5.7 Regarding soil properties in the North Spur and over-consolidated clays in
Eastern Canada

In the REPORT, reference is often made to landslide conditions in Eastern Canada (EC), as if the
geology and soil properties of the Churchill River Valley (CRV) were a uniform part of this vast
area. However, as this Reviewer and others have pointed out, the consolidated clays typically
found in EC are different both in origin and in physical properties from the mixed marine
sediments of the CRV. No conclusions drawn from one can be applied to the other. [See
Sections 1.1, 1.2, 3.1.2, and 3.1.3 of these comments, as well as Sections 5.1, 5.2, and 5.3 of the
REPORT.]

For instance, according to the REPORT, the fact that most landslides in EC are classified as
retrogressive spreads is used to exclude most types of slope failure in the CRV other than
spreads and flow slides. Further, the fact that the main failure surface in spreads often tends to
incline gently is used to support a methodology of investigating only failure development along
horizontal surfaces. (See Section 5.1 and the end of Section 5.2 of the REPORT).

However, in reality the properties of the highly over-consolidated fat clays — widespread in
Eastern Canada — have little in common with the under-consolidated mixed lean clays or
porous silty/sandy soils such as those in the Stratified Drift of the North Spur. Nor do EC clays
conform to the generally porous marine sediments common in the Churchill River Valley. (See
Sections 2 and 3 of the Reviewer’s previous 2015 report [13].

In the retrogressive spread slide of about 8 hectares that occurred at Saint-Barnabé-Nord, the
ratio of clay to silt varied from about 70%/27% to 30%/60%, whereas the sand content was
mostly less than 5% and very rarely in excess of 10%. In contrast, the clay content of the Upper
Clays and mixed silty sands of the Churchill River Valley is far below 30%. (Section 3, Ref. [13]).

Moreover, the permeability values (k = m/sec) in Saint Barnabé-Nord ranged from 1 x 10–9 to
5 x 10–9 m/s, whereas the k-values of the Upper Clays in the North Spur are about 1 x 10 -7 m/s.
This implies that the mixed Upper Clays in the Stratified Drift are from 20 to 100 times more
permeable than the clays in Saint-Barnabé-Nord.

In other words, the properties of the soils in Saint-Barnabé-Nord were those of true clays, and
their sensitivity was due to high over-consolidation ratios (OCRs) and not to high porosity. Note
that the high OCRs imply that the current vertical stress is considerably less than the original
consolidation pressure.*

*
Singh A and Mitchell JK. (1968) “General stress-strain-time function for soils”. J Soil Mech Found Div 94 (SM 1),

ASCE, pp 21–46. [18]
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In clear contrast, the sensitivity of soils in the North Spur is related to the in-situ soil porosity (n)

being markedly greater than the value of the critical porosity (ncrit). Such types of soil may
liquefy due to a moderate deviatory deformation or because of minor repetitive stress-strain
reversals — and that irrespective of the prevailing stress level.

Conclusion. The sensitivity of the soils in the Churchill River Valley is of a totally different nature
and origin than that of the highly over-consolidated clays of Eastern Canada.

5.8 A proposal for realistic testing of the porosity of soils in the Stratified Drift

As stated in the quotation from Terzaghi and Peck on Page 13 above:

“A metastable structure in a natural sand deposit is very difficult to detect, because
the structure collapses during sampling and subsequent transportation.”

As shown in previous Sections, both the data presented in the REPORT and the general character
and development of the Churchill River Valley strongly indicate that the in-situ porosities (or
void ratios) of some soils of the North Spur are probably critically high. If this is the case, then
the safety factors presented in the REPORT are of little relevance. Considering the enormous
catastrophe that would envelop downstream communities in the event of a breach in the North
Spur, the true status of soil porosity in the North Spur should be verified in-situ, and verified
beyond any shadow of a doubt.

A practical way to accomplish this goal is to carry out tests in which the soil profile is subjected
to violent vibratory treatment and the subsequent changes are carefully measured. Such a test
yields a more dependable measure of the actual in-situ porosities of soil layers.

This Reviewer suggests the following in-situ stress test (provided of course that such a test has
not already been carried out).

Proposed Testing Procedure

1) Within an area of say 20 metres x 30 metres, 24 piles are driven by a rammer in straight lines
at 5-metre centres. A positive feature of such a test area is that it need not necessarily obstruct
or interfere with ongoing construction work.

• •

• •

• •2
0

m
et

re
s

• •

Suggested

3

1

• • • •

• • • •

• • • •

• • • •

pattern of test piles

0 metres



22

2) The piles may consist of 0.3 m diameter steel pipes fitted with splices every 10 metres. The
pile tips should be flat and closed by a perforated steel plate to allow dissipation of water.
Alternatively, other methods of drainage may be employed. A point of reference for each
pile and its precise level must be fixed and registered.

3) All piles are driven 20 metres to elevation ≈ +39, i.e. about 20 m below the ground surface 
level. The sequence in which the piles are driven is not crucial. The settlements of all
reference points are then accurately measured, and excess pore water pressure is allowed
to subside by drainage through the perforated bottom plates or by other means.

4) All piles are then driven another 10 metres to elevation ≈ +29, i.e. about 30 m below the 
ground surface. The settlements of the reference points are measured and excess water
pressure is again dissipated.

5) All piles are driven another 10 m to elevation ≈ +19. The settlements of the fixed points are 
again recorded and excess water pressure dissipated. At this point the total soil settlement
indicates roughly the amount of vibratory compaction of the loose Stratified Drift.

6) All piles are driven another 10 m to elevation ≈ +9. The additional settlements generated in 
the Lower Clay are measured. Some degree of vibratory compaction may also be expected in
this layer. Below, the recommended test pattern and depth levels are diagrammed together:

Impact tests of this kind are the best way to get a realistic notion of the true in situ porosity of
such soil layers. The above procedures yield a reliable indication of the effects on soil porosity of
heavy vibratory impact. From the measurements of soil settlement it is possible to evaluate the
inherent sensitivity of the soil profile, i.e. how sensitive the layers are to deviatory deformation
and to stress/strain reversals such as those caused by large triggering loads and seismic activity.
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If the settlements generated in the Stratified Drift and Lower Clay prove to be minute or
moderate, then the reliability of the results of analyses made in the REPORT will be generally
confirmed.

If, on the other hand, the settlements indicate a high degree of compaction — i.e. the mean in-
situ porosity (n) is clearly in excess of the critical porosity (ncrit) — then it will be necessary to
strengthen the affected soil structures. As per Terzaghi and Peck [3], the recommended
technique would be vibratory compaction, to be carried out over a wide area of the North Spur
east of the cut-off-wall.
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6. SUMMARY

Although the Nalcor/SNC-Lavalin REPORT is a comprehensive geotechnical study, in the opinion
of this Reviewer it is deficient in important aspects of the laws of Soil Mechanics and in current
research in this field. The following shortcomings may be noted:

6.1 On progressive failure

In Section 3 of the REPORT there is generally correct wording about the possibility of progressive
and retrogressive failure formation. Yet, apart from a number of references to the literature on
the subject of “Progressive Failure”, there is no evidence in the REPORT of any actual progressive
failure analyses having been performed. Nor have any results from stress-strain (deformation)
testing, which are indispensable for performing such analysis, been presented in the REPORT.

Progressive failure analysis requires that soil parameters — especially the stress/deformation
relationships — applicable to each of the different phases of landslide development be defined
and implemented in the analysis.

This means, for instance, that even if FLAC analysis (Fast Lagrangian Analysis of Continua, a
computer model) is utilized, each phase of a progressive (or retrogressive) landslide has to be
studied separately, applying the specific relation between stress and deformation that is valid in
the phase being studied.

6.2 On the general application of elastic-plastic (LEM) analysis

The studies in the REPORT, aiming at certifying acceptable safety against the initiation of possible
progressive failure development in the downstream slope, are all based on elastic-plastic soil
behaviour. Yet there is no evidence in the REPORT that this stress-strain relationship has been
validated for the porous soils of the North Spur.

This is extremely unsatisfactory. One of the best-established facts about the soil conditions in
the North Spur (and generally in the Churchill River Valley) is the finding that the soil layers do
not comply with, or abide by, the kind of elastic-plastic behaviour that is generally assumed in
the REPORT.

The geotechnical data presented in the REPORT, e.g. in Table 2-2 on page 19, indicate that these
soils, especially in the Stratified Drift, have a marked potential propensity to liquefy — to lose
most of their shear resistance — when subjected to deviatory deformation or stress-strain
reversals. Note that such liquefaction has, in fact, recently taken place in similar soils in the
Churchill Valley, causing large landslides [15].

Again, this is due to the in-situ porosity being generally greater than the critical porosity. (See
Section 2). The use of LEM and drained analyses is, according to basic rules in Soil Mechanics,
justifiable only as long as it proven that the actual soil porosity in-situ (n) is not too different
from the critical soil porosity (ncrit).
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If this proves not to be the case in the North Spur, then there will be an urgent need for soil
compaction over large areas of the North Spur. (Cf Terzaghi and Peck [3,4] and the quotation in
Section 5.3, as well as the compaction test proposal in Section 5.8).

6.3 Horizontal failure planes

Stability modelling in Sections 5 and 6 of the REPORT is based on horizontal failure surfaces
through the Upper and Lower Clay formations. Yet there is no rule in Soil Mechanics exempting
failure planes that are not horizontal. In fact, failure planes do not as a rule favour horizontal
propagation. On the contrary, progressive landslide initiation is typically triggered by locally
steep failure surfaces in the initiation zone.

As indicated in Section 5.12 above, failure surfaces may well develop both in the lower Upper
Clay layer and along sensitive drifts in the massive Lower Clay formation. Dependable stability
analysis must therefore include any type of failure surface propagation, based on verified stress-
deformation relationships.

6.4 Maximum potential landslide extension using LEM

The engineering team’s proposals for the stabilisation of the eastern or downstream slope of
the North Spur are shown in cross-section in Figure 5-2 on page 38 of the REPORT. Several slip
circles are indicated by dashed lines on the potentially vulnerable slope. Note that the chord
length of the slip circles, representing the maximum displacement of a landslide, is almost 200
metres.

Investigations by this Reviewer [5-7] have indicated that when slip circles in sensitive soils
extend more than 50 or 70 metres, safety factors based on LEM analysis become very
unreliable, especially with respect to concentrated additional loading. (See also Section 5.6).

6.5 Finger drains

Although finger drains are useful for promoting and maintaining drained conditions over time,
they constitute no guarantee against progressive failure development.

During the rapid stress changes in the different phases of progressive failure formation, the
water content of the soil is virtually trapped in its pore system. There is little or no time for
water to percolate in any direction. Hence, if the porosity (n) is in excess of the critical porosity
(ncrit), soil liquefaction may take place whether or not finger drains are present.

6.6 Investigation of in-situ porosity conditions in soil layers

When evaluating the results from the testing of initial void ratios, the difficulty of obtaining
undisturbed soil samples must be taken into account. In particular, the in-situ void volume of
soil material with high porosity is easily affected by the sampling procedure. (Cf the Terzaghi-
Peck quotation in Section 5.3, also Section 5.8).
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6.7 Required testing

The soil investigations presented in the REPORT comprise mostly laboratory testing carried out in
1979 and 2013. Relatively few dynamic tests were done in-situ. The detailed computer model
that follows is explicitly based on elastic-plastic conditions and LEM analysis. Dynamic stress
conditions are extrapolated from static ones.

However, as is well-recognised, several of the soils of the North Spur are not of the elastic-
plastic type. Furthermore, LEM analysis cannot model or predict potential failures of the
downhill progressive kind.

It is noted that the scars of nine major landslides are visible on the two sides of the North Spur as
far as the Kettle Lakes.* The most recent of these, on the downstream slope in 1978, involved
liquefaction of the Stratified Drift over a long lateral distance. All experts agree that without
human intervention, the North Spur will continue to suffer landslides and degrade as a natural
barrier to the Churchill River.

Bearing this in mind, it is striking that the authors of the REPORT have not offered the results of
dynamic hydro-geological testing that would better quantify the risk of a progressive failure.
Without such results, the safety factors presented in the REPORT cannot be accepted as best
engineering practice.

This Reviewer has proposed, in Section 5.8, a practical method for making a simple, effective
in-situ assessment of the stability of the North Spur even while construction proceeds. If the soil
settles significantly under vibrational stress, then the safety factors and proposed stabilization
works in the REPORT may be judged inadequate. If however, the soil settles very little, then the
assumptions of the REPORT may be considered to be confirmed.

The Reviewer urges that this testing be done immediately, before construction makes significant
changes to current water levels.

6.8 Potential mitigation

If the tests recommended in Section 5.8 demonstrate a risk of North Spur failure despite the
proposed stabilization works, then additional stabilization would be required. This Reviewer
suggests — tentatively, until the data are better known — that this would be best be done by
compacting the upper soils of the North Spur over a wide area.

The time required for such compaction, and its interaction with the construction program, is a

further compelling reason for carrying out the required vibrational testing immediately.

*
There are at least two giant older scars of so called “bottle-neck slides”, one of which now forms the Kettle Lakes

depression. Bottle-neck landslides occur in highly sensitive soils [10].
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7. CONCLUSION

The Nalcor/SNC-Lavalin ENGINEERING REPORT of 21 December 2015, subtitled “North Spur
Stabilization Works, Progressive Failure Study”, offers a detailed examination of the suitability of
the North Spur as a dam. It concludes that, following a series of measures to stabilize its slopes
against further landslides, the North Spur will form a safe and reliable part of the impoundment
wall.

This Reviewer has commented in detail on this REPORT and its conclusions. They are summarized
here:

 The REPORT’S stability analysis is based on inappropriate assumptions about the soil
characteristics of the North Spur, failure planes, and dynamic stresses.

 The REPORT, despite its subtitle, does not offer a study of potential progressive failure, and
recent relevant research in this field is ignored.

 The REPORT’S computer model is based on inappropriate data and on assumptions that
stress response under static conditions can be used to model dynamic ones.

 The stabilization measures proposed in the REPORT — principally to maintain vulnerable
soils in a semi-drained state — are likely to be of little relevance to the deficiencies noted
above.

In view of these deficiencies — and noting that large flowslides involving liquefaction of silty
clay are a notable feature of the Lower Churchill Valley, and noting that very large slides of this
kind occurred in 1978 on the North Spur itself, in 2010 at Edwards Island, and in 2014 a smaller
slide on the north bank just five kilometres downstream of Muskrat Falls* — this Reviewer
recommends that a renewed analysis of the risk of progressive failure be initiated at once for
the North Spur.

The Reviewer recommends that the first component of such an analysis should be an empirical
in-situ test of the North Spur: its response to the heavy vibration of pile-driving, as detailed in
Section 5.8.

If the mixed layers of the Stratified Drift are found to settle and compact upon such heavy
vibration, then these layers must be considered susceptible to liquefaction and flow-sliding.

In such a case, new geo-engineering studies must be carried out with a view to quantifying the
risk and stabilizing the vulnerable soils. It is likely that this would involve compaction of the
upper soils of the North Spur over a wide area and a major alteration of the current
construction program.

*
This last landslide has good video documentation, found at https://www.youtube.com/watch?v=LIcL_pN4NlQ.
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IV. Spreadsheet Analysis, 2017-06-01 

Stability of the Hydropower Dam at Muskrat Falls studied by Stig Bernander with a finite 

difference method according to Bernander (2000, 2008, 2011).  

Case 3 

o = 21,1 kPa     s= 60 kPa    sR= 12 kPa   s/sR = 5     Ncr = 866 kN/m   

Safety factor  F = Ncr / Nw = 866 / 2420 =  0,357 < 1 

Case 4 

o = 41,1 kPa     s= 70 kPa    sR= 14 kPa   s/sR = 5     Ncr = 521 kN/m   

Safety factor  F = Ncr / Nw = 521 / 2420 =  0,215 < 1 
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Executive Summary  
 

a) Many of the issues dealt with in the current report only apply to fully water-saturated 

highly porous soils. 

Note also that in such soils, neither the maximum shear strength nor the residual shear 

resistance may comply at all with the laboratory tested drained peak shear strengths or with 

prevailing piezometric levels. This is because liquefaction (or significant loss of residual 

shear strength) in saturated porous soils is mainly related to the degree of deviatory 

deformation involved rather than to concurrent stress levels and piezometric levels.   

(Confer Issues No: 2 & 6 and especially Figure 2:1 below.)  

Unless it can be clearly established that potential failure-surfaces can only develop in soil 

layers, in which the prevailing in-situ porosity is of the same magnitude as the critical 

porosity – i.e. that n ≈ ncrit – calculated safety factors based on the Limit Equilibrium Model 

(LEM) have little relevance and the true values will remain unknown until a correct 

approach has been made. 

     

b) One of the most questionable – and in author’s opinion seriously erroneous – 

assumptions in the ENGINEERING REPORT, (2015), Ref. [2b], is that the enormous pressure on 

the COW can be balanced by plastic LEM failure in extensive horizontal failure planes.  

 

The main point, among other is: How can the geometry of potential failure surfaces ever be 

taken for granted in a mixed porous and sensitive soil mass, the detailed structure of which is 

not even precisely defined? How can inclining failure planes, in this context, be exempted 

from general rules in soil mechanics?? 
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c) Progressive failure formation behind the COW.  

Water contents greater than the Liquid Limit (i.e. w >> LL) manifest the risk of liquefaction 

or of high sensitivity – in this context indicating the presence of highly sensitive porous 

layers, not only in the Stratified Drift, but also in the Lower Clay Formation.   

Such layers may well, as can be concluded from IWLSC (2013)-posters (Ref. [1]), be sloping 

east-wards towards the deep whirlpool, in accordance with Figures 3:1a & 3:1b  

(in Issue No 3: below), and may as already mentioned not be presumed to being horizontal, 

as in the Nalcor/SNC-Lavalin ENGINEERING REPORT, Ref. [2b]. 

Moreover, in general failure planes may of course just as well develop in the porous sands 

and porous silty sands as in the lean sandy silty clays of the Stratified Drift.  (Confer, for 

instance, the shape of the 1978 Landslide on the East side of the North Spur.) 

 

Applying the soil properties – based on Tables 2.1 and 2.2 in the ENGINEERING REPORT –  to 

progressive failure along sloping failure planes, analyses by R. Dury and by the author of this 

report indicate that acceptable safety factors (Fs > 1.5) are hard to establish, provided the 

critical water-saturated and porous soil layers have not been duly compacted or de-

saturated.  

 

d) About possible progressive failure behind the COW in the homogeneous Lower Clay? 

Yet, even if the Lower Clay were assumed to be a perfectly homogeneous clay structure, the 

effects of progressive failure development along steeply inclining failure planes may not be 

disregarded but must instead be thoroughly investigated. (Confer Ref [15], Section 6. 

Concluding Remarks, last sentence.)   

  

Conclusions from Points c) and d): The effects of strain- and deformation-softening in the 

soils immediately behind the COW – due to the enormous pressure build-up related to 

impoundment – must be investigated as possible progressive failure events, and that both in 

the Upper Clay (2) and in the Lower Clay formations. 

  

e) About finger drains and drainage. The conditions triggering progressive slope failure are 

not long extended processes in time. The rate of deformation at the end of the triggering 

phase is normally high, implying that the excess pore-water pressures, liable to build-up at 

this stage, may not dissipate fast enough through a few inter- distant finger drains.    

The problem is of course aggravated the greater the difference (n - ncrit) happens to be.     

 

Hence, are finger drains a truly reliable measure for the prevention of triggering progressive 

failure development behind the COW along sloping failure surfaces?? 

This issue must be proven beyond any shadow of a doubt. 

 

f) Remedial measures: The risk of progressive failure development may be dealt with by 

installing efficient closely spaced drains extending through the Stratified Drift and deep 

down into the Lower Clay formation. In these drains, the hydraulic pressure is to be 

controlled by deep pump wells operating all the time during impoundment.  

 

This drainage should cover an area stretching at least up to some 40  50 m East of the 

COW.  
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Report:  Regarding Various Issues 1  8 
 

Issue No 1:  About the miss-use of the Limit Equilibrium Mode (LEM) for 

slope stability analysis. 
 

According to the SNC/Lavalin, reports, (e.g. Ref. [2b]), all predictions of slope stability have 

– in one way or another – been based on the Limit Equilibrium Mode of analysis (LEM).  

Ref. [2b], (Chapter 2,’Geology and Soil data’ in Sections 2.3.3  4, Tables 2.1 and 2,2). 

 

This is of course extremely odd from a modern R&D point of view, as extensive forward 

progressive landslides in Scandinavia and Canada (Saint Fabien, Québec 2004) – as well as 

extensive retrogressive spreads in Canada – cannot generally be explained using the LEM 

mode of failure analysis – and that not even in hindsight. If LEM analysis were always 

valid, there would be no such thing as inexplicable landslide failures.   

 

Maximum potential landslide extension – for a reliable LEM prediction of landslide failure 

in sensitive normally consolidated Scandinavian clays – should not exceed about 40 to 70 m. 

(Confer Issue No 5 below.) 

 

This applies especially to the effect of the enormous water pressure change on the Cut-off- 

Wall (the COW) due to the impoundment.  

It is in this context crucial to realize that shear deformations in the soils beyond the COW are 

totally related to this enormous change of hydraulic pressure – especially in the triggering 

zone of a possible progressive landslide. (Confer Issues No:s 3 and 4 below).  

 

At the IWLSC 2017 Conference (Trondheim) it was stated (Bouchard, SNC/Lavalin) that 

progressive failure analyses have been performed regarding the eastern downstream slope. 

However, as explained in the author’s comments on the Nalcor/SNC-Lavalin Engineering 

Report (Dec. 2015, Ref. [2b]), there is no evidence at all in the Engineering Report of any  

correct progressive failure study having been done. (Confer Sections 6.1, 6.2, 6.4 and 6.5 in 

Ref. [15].)  

 

 

Issue No 2: Are the soil conditions in the Churchill River Valley identical 

to those of highly over-consolidated clays in vast areas of Eastern 

Canada???  

 
The types of high sensitivity of soil layers in the Stratified Drift – as well as those of 

isolated layers in the Lower Clay formation – should not be confused with the kind of 

sensitivity that is typical of the over-consolidated clays common in Eastern Canada.  

Such clays can be loaded to peak resistance under relatively small shear strain and the post-

peak deformation softening is moderate – at least in the triggering phase of a downhill 

progressive or retrogressive landslide. The value of the residual shear resistance (cR) then 

tends to be in the range of 0.3 to 0.5 times the peak value. 

 

However, in highly porous soils, where the in-situ porosity is higher than the critical 

porosity (i.e. when n > ncrit), much greater loss of shear resistance (even liquefaction) is 

likely to occur due to significant deviatory strain (or shear deformation) – and that may 
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happen irrespective of the prevailing stress level condition (τ/c) or of the current 

piezometric level in the critical soil layer. 

Furthermore, the peak shear strength – established under ‘more or less’ drained laboratory 

conditions – is then very unlikely to be attained in the slip surface (or in the shear band) 

during slide progression. (Confer Figure 2:1.) and Ref. [3], Terzaghi & Peck.)  

 

 

 
 

Figure 2:1 Failure modes in porous soils likely to liquefy, i.e. when n >> ncrit. (Cf Ref. [13]). 

 

Porous soil layers in the Lower Clay formation are also likely to be susceptible to 

liquefaction and radical loss of residual shear resistance. Failure surfaces may therefore just 

as well develop through porous sands and porous silty sands as in the lean clayey silty 

sands of the Stratified Drift.  

 

Conclusion: In other words, the assessment of the risk of progressive failure in long slopes, 

and the corresponding safety factors (Fs) cannot reliably be based on LEM analysis. 

 

  

Issue No 3: Possible Progressive Failure development in the soil deposits 

East of the Cut-off Wall (the COW). Formation of failure surfaces exemplifying 

Safety Factors based on progressive failure analysis by the author. (Bernander). 

                      

3.1 About the sensitivity of Upper Clay 2 in the Stratified Drift 
This issue is dealt with in more detail in Ref. [13], (Sections 2. and 3.), where a Liquid 

Limit/Plasticity Index chart (Figure 3:3 in Ref. [13]) shows how the soil deposits in the 

Stratified Drift fit into a Casagrande diagram. (i.e. with the soil properties as presented in the 

Nalcor Report of 21 July 2014, Ref. [2a]).   

Moreover, the general soil properties are presented in the Nalcor – SNC/Lavalin 

ENGINEERING REPORT, Ref. [2b], although, importantly, the precise soil structure is still 

not defined or visually documented. 
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Yet, in the Engineering Report, there are – as already mentioned –  no actual studies of 

progressive failure formation.  

 

Furthermore, potential failure surfaces related to the massive hydraulic pressure against the 

COW are presumed to be perfectly horizontal for hundreds of metres and hence, possible 

failure in the soils behind the COW are taken to be of no importance for the stability of the 

North Spur.  

Now, if horizontal failure planes were the only option, the author of this report would not 

either be very worried, as obviously the stresses along such a long horizontal failure plane 

would involve minor risk of slope failure – i.e. considering the horizontal nature of the 

ground surface – and that even if the soil layers were to be highly sensitive (but not actually 

liquefying) under undrained conditions.  

 

3.2 Effects of a sloping failure surface 

However, the stability conditions along a sloping failure surface in the same type of soil 

structure would be essentially different. As can be shown by apt progressive analysis, the 

conditions triggering slope failure change radically as soon as the possible failure plane is 

sloping.  

For the purpose of underlining this problem, the author has made a few ‘check-up’ 

progressive failure studies yielding the safety factors for the section shown in the figures 

below. Figure 3:1a, – showing a cross-section through the 1978 Landslide in the North Spur 

– was presented as Figure 8 on a IWLSC (2013) Poster, (Ref. [1]). 

It may be pointed out that neither Figure 7 nor Figure 8 on the Poster (2013) indicated any 

perfectly horizontal layering of the varying types of sediments. According to Section B-B, 

the mean slope of the lower boundary of the Upper Clay (2) is about 4 % beyond the COW 

for about 200 m (and > 5% over some 80 m). 

 

Considering the thickness of the Upper Clay layer – and the failure surface related to a 

triggering load near the COW – one may well add another 5 % or more to the assumed local 

slope inclination. 

 

Figure 3:1a Section through the North Spur subject to progressive failure analysis by the 

author. The soil layers in the section are identical to those in Figure 8 (Section B-B) on a 

Poster at IWLSC (2013) in Québec City, showing a cross section through the 1978 North 

Spur Landslide. (Ref. [1]). (The total deformation-generating change of hydraulic pressure 

related to impoundment has been added to the diagram).  
 

(Note: The soil conditions over about 200 m from the COW have not been affected by the 1978 

landslide. Neither this section, nor the other one on the Poster (Figure 7), is indicative of any 

dominantly horizontal stratification of the soil layers.)  
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Figure 3:1b showing the section in Figure 3:1a with Hor./Vert. scales = 1:1.   

 

Furthermore, it must be emphasized that there is no geotechnical law stating that failure 

planes are bound to follow the orientation of a sedimentary structure. They will instead 

adopt the geometrical shape along which failure is most likely to be initiated and 

developed, thus rendering the lowest safety factor (FS) – and that irrespective of whether 

parts of the soil mass consist of sensitive clays or of saturated porous silts or sands. 

 

The mentioned ‘check-up’ progressive failure analysis – based on a moderately inclining   

failure plane (i.e. 5 %) over a distance of 100 m from the COW – rendered for instance the 

safety factors shown in Table 3:1. 

  

Table 3:1   Calculated safety factors based on progressive failure formation – Case no 5   
 

Water         Hydraulic      Slope of      Peak shear    Residual shear   Critical      Safety                                                                                                           

level           force at           potential        stress            resistance         Load        Factor 

 WL            the COW     failure plane        c   
 
                         cR                          N crit                Fs 

                     kN/m                %               kN/m
2
            kN/m

2
             kN/m          

+32                605                   5                 70                  17.5              ≈ 560         0.92 

+34                781                   5                 70                  17.5              ≈ 560         0.72          

+39              1711                   5                 70                  17.5              ≈ 560         0.33          

 

Note: Even if the pressure ‘build-up’ may be a slow process, abiding with plastic LEM  

conditions, the strain rate at failure near and beyond peak shear stress will nevertheless be 

rapid, in which case the soil resistance may adopt the critical value (Ncrit). This condition 

constitutes a normal factor initiating progressive landslide failures.  

If the inclination of the failure surface close to the COW had been assumed to be e.g. 6 % or 

7 %, the calculated safety factors (Fs) would have been considerably lower than those shown 

in Table 3:1.  

 

 

Issue No 4: Analysis by Robin Dury, 2017. MSc Thesis.  
                    Luleå University of Technology, Sweden, Reference [9b] 

                    Case Study of the North Spur at Muskrat Falls, Newfoundland/Labrador,  

                    Canada. 

 

4.1 About possible progressive failure in the Upper Clay formation.    

Robin Dury’s Thesis presents studies focused on the stability of the North Spur based on 

progressive failure analyses in accordance with the Bernander Finite Difference Model 

(FDM). 

The studied issue is related to the enormous effects of the impoundment, i.e. raising the 

upstream water level from WL +17 to WL 39. This implies changing the externally active 

hydraulic pressure (and the related shear deformations) on the soils immediately behind the 
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COW over a width of say 250 m by some 600 000 kN (= 60 000 metric tons) – i.e. a massive 

force ‘really’ capable of triggering progressive failure. 

 

Figure 4:1 shows the safety factors calculated by Dury for varying sensitivity ratios and for 

different values of the peak shear strength. 

 

The specific values of the safety factors (FS) for the water levels WL = +34 and + 39, 

pertaining to the separate study by the author, mentioned in Section 3 above, have been 

added to Dury’s diagram for comparison. The fact that the safety factors shown are not 

identical is of no import in the current context, as the data presumed are not identical.  

 

 

 (FDM).  

 
Figure 4:1 Safety factors based on progressive failure analysis (acc. to the Bernander FDM 

model) as calculated by Dury (2017, Ref.[9b]) for varying sensitivity and for different values 

of the peak shear strength. In the figure, Dury’s analyses are based on the water level WL 

being + 39 m. 

(Note: The Fs -values related to Table 3:1 for WL = +34 and +39 have been added to Dury’s 

diagram by the author of this report.)   

 

The results of progressive failure analyses depend on various factors such as e.g. the peak 

shear strength (c), the residual shear resistance (cR), the inclination and shape of the failure 

surface, the assessment of in situ conditions, soil porosity and earth pressures in overlying 

soil layers etc. For the initiation of progressive failure, the geometry of the slip surface is of 

special importance in the triggering zone, i.e. an area within a distance from the COW (i.e.) 

of some 30  50 m. 

 

As the sedimentary structure, consisting of lean clayey sandy layers and loose silty sands, is 

not presented in sufficient detail in the Nalcor reports (Ref. [2a] and Ref [2b], it has not been 

possible to perform precise analyses at this stage. It must also be deliberated that porous silty 

sandy soil layers with in-situ porosity >> critical porosity may be highly sensitive and prone 

to liquefy – (i.e. even without any clay content). 
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Conclusion: The progressive failure studies clearly indicate that safety factors based on the 

Limit Equilibrium Mode (LEM) cannot by far render reliable factors of safety (Fs), and that 

the direct effects of the impoundment on the risk of progressive failure initiation in the soils 

behind the COW should be carefully investigated considering the actual in-situ soil porosity.  

The normal value for Safety Factors (Fs) in Soil Mechanic’s practice is 1.50. 

 

Regarding the effects of finger-drains, confer Issue No 8 

 

4.2 About possible progressive failure in the Lower Clay formation.    
Although the mean value of the Liquidity Indices in the Lower Clay formation is generally 

significantly lower (i.e. 0.6) than that of the Stratified Drift, there are nevertheless                   

– according to Table 2.2 in the ENGINEERING REPORT, Ref. [2b] – soil layers in the Lower 

Clay structure, in which the Liquidity Index (LI) substantially exceeds 1.0, (i.e. 1 < LI < 2). 

Values of LI between 1 and 2 in soil layers indicate high porosity and sensitivity, the water 

content (w) significantly exceeding the Liquid Limit, (i.e. w >> LL). ‘ 

However, values of LI between 1.5 and 2.0 indicate possible potential for strain- (or 

deformation-) induced liquefaction. (Further information about the Lower Clay Formation is 

given in Table 2 in Ref. [15], Section 3.2).    

 

According to the cross-section on Figures 3:1a and 1b, porous sensitive layers in the Lower 

Clay may well be sloping and, as has been emphasized in earlier reports by the author, 

the possibility of forward (downhill) progressive failure due to the enormous water pressure 

on the COW should be properly investigated. (Confer e.g. Ref. [14], Section 6, Conclusive 

Remarks; Ref. [15], Section 5.1, About Failure Surfaces; and Ref. [16], Points 7 and 8.) 

 

The possibility of progressive failure in the Lower Clay formation has been studied in Dury’s 

MSc Thesis, (Section 5:3), applying the Bernander Finite Difference Method (FDM), 

Reference [9b].  This study is also based on the section defined by Fig.8 on the IWLSC 

(2013) Poster, (Ref. [1]) – i.e. corresponding to Figure 3:1b above.  

 

Table 4:2 Lower Clay formation – Safety Factors 

Mutually related values of Peak Shear strength, Sensitivity ratio and Safety Factor. 

Values derived from Figure 5:13 in, Robin Dury’s MSc Thesis, Ref. [9b]. 

        c                        cR/c                Fs 

  110 kN//m2                      0.24              0.59  

   100 kN//m2 
             0.26                0.60 

     90 kN//m2
              0.30                0.61 

     80 kN//m2 
             0.34                0.60 

     70 kN//m2 
             0.38                0.58 

     60 kN//m2 
             0.46                0.55 

     50 kN//m2 
             0.56                0.49 

 

Robin Dury has evaluated the safety factors for wide ranges of peak shear strengths and 

sensitivity ratios – i.e. for peak strengths in the order of c = 50 110 kN/m2
, and

 
for residual 

shear resistance ratios
 cR/c = 0.2  0.57.  

(Note: For the safety factors in Table 4:2 to become greater than 1.0, the values defining the 

residual shear resistance (cR/c) must exceed those shown in the table. Calculated values only 

apply to the specific geometry of the failure planes assumed.)      
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Conclusions: The results of the computations imply that safety factors based on LEM 

analysis are unreliable. The true values of the safety factors (Fs) will remain unknown until a 

correct approach has been performed. 

The normal value for Safety Factors in Soil Mechanic’s practice is 1.50. However, when 

progressive failure is an option, even higher values of safety factors should be considered, 

depending on various basic data. Confer Table B.III in Reference [6].  
 

In porous soils, with a marked tendency to liquefy, the problem defined in Issue 2 above 

must also be considered. Progressive failure related to liquefaction (or heavy loss of shear 

resistance) due to shear deformation is – as has repeatedly been emphasized – likely to occur 

when the current in-situ porosity (n) exceeds the critical porosity (i.e. n > ncrit). (Confer 

References [3] & [4].) 

Failure in isolated highly porous soil layers may then readily develop – and that even 

irrespective of the prevailing piezometric level.  

 

Furthermore, in the triggering phase of progressive failure, the rate of strain and 

deformation development at peak and post-peak conditions is normally a rapid process in 

sensitive soils. Application of LEM analysis, based on the possible beneficial effects of inter-

distant finger-drains, are in this context highly disputable.   

 

Utilizing the soil properties – based on Tables 2.1 & 2.2 in the ENGINEERING REPORT [2b] –

for studying progressive failure along sloping failure planes, analyses by R. Dury and by the 

author of this report indicate that acceptable safety factors (Fs = 1:50) are hard to establish, 

unless the critical soil layers are duly compacted or effectively de-saturated.  

 

 4.3 About possible failure in homogeneous Lower Clay 

Yet, even if the Lower Clay were believed to be a perfectly homogeneous clay structure, the 

effects of progressive failure development along inclining failure planes may not be 

disregarded, and should instead be duly investigated.  

(Confer Ref [15], Section 6. Concluding Remarks, last sentence).   

 

   

Issue No 5: Regarding progressive failure on the Eastern downstream slope. 
 

Generally, progressive failure in long slopes can only be predicted by relating the 

deformations in the soil (due to the additional load) to valid stress/strain (deformation) 

relationships.  

As already stated in Issue No 1, maximum potential landslide extension – for a reliable LEM 

prediction of landslide failure in sensitive normally consolidated Scandinavian clays – 

ranges between 40  70 m, largely depending on the depth to the studied failure plane.  

 

Applying LEM to potential landslides longer than 200 m – as is done in the ENGINEERING 

REPORT, (Ref. [2b]) – renders highly unreliable safety factors in sensitive and water-

saturated soils. (Cf Ref. [15]). 

 

The work presented by Chen Wang an Bipul Hawlader in Ref. [2d] relates to retrogressive 

failure conditions on the East slope. However, as such slides are not a key issue in this report, 

they are not dealt with in this current context. 
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Issue No 6: Laterally progressive failure  
 

As already stated: Raising the upstream water level from say + 17 to + 39 represents a 

change of the hydraulic force on the soil structure close the Northern rim by 2420 kN/m.  

Over a width of say 250 meters, this corresponds to an additional force of some  

600 000 kN, most of which will initially – i.e. in the triggering phase of a progressive 

landslide – act on the COW and the nearby heterogeneous water-saturated porous soil 

masses.  

Although the rate of impoundment may be a relatively slow process, the horizontal thrust 

will in the triggering progressive failure phase generate large shear deformations and 

raised hydraulic pressures in the saturated lean clayey – and mixed (clayey) silty, sandy – 

soils immediately East of the COW, possibly leading to liquefaction or massive local loss 

of shear resistance. This phenomenon, which in the current case, is mostly related to grain 

instability in porous saturated soils, may as mentioned, take place irrespective of prevailing 

stress levels and pore water pressures – whether they be static or related to percolation.  

(Cf Issue No 2.)   

  

Furthermore, even if the effects of impoundment were slow, the rate of deformation in 

different parts of the soil mass will, by far, not be identical over a width of say 250 m  

The heterogeneity of the soil volume involved will – both in the vertical and the horizontal 

directions make the rates of deformation vary both in space and time. This constitutes an 

important fact that must also be deliberated when evaluating the risk of progressive failure 

development in potentially extensive landslides*.  
(* A similar phenomenon with enormous impacts:  

Continental Drift goes on at the slow rate of a few centimeters per year over long periods of time – 

but nevertheless, mankind locally experiences the dramatic effects of volcanic activity, massive 

sudden movements of the earth crust, earth quakes and gigantic tsunamis, i.e. all due to locally 

varying inhomogeneous geological conditions.)  

 

Evaluating the effects of the gigantic pressure due to impoundment by LEM analysis requires 

that the soil stiffness – while being dependent on porosity, friction, cohesion, sensitivity, 

water saturation, acting vertical stresses, degree of pre-consolidation etc – is uniform over a 

massive soil volume of say 700 000 m
3
 (e.g. 250 m *70 m * 40 m).   

 

According to the soil investigations, the North Spur is a very hetero-genius structure thus 

implying that there may be large portions of the soil volume behind the COW that are 

considerably stiffer than other neighbouring parts. This means in turn that the stiffer parts 

may temporarily sustain more of the impoundment pressure than softer parts.  

However, the overloaded stiffer parts near the COW are bound to fail in due course, and 

when the accumulated energy built-up in the same is released, sudden high rate strains and 

deformations will affect the neighbouring soil volumes.  

Hence, if tendency to liquefaction (or high sensitivity) exists, wide landslides tend to 

progress laterally. Again, such local failures are likely to happen so rapidly that fingerprint 

drains (also in this context) may not ensure that the drainage effects exclude the possibility 

of liquefaction – or critical loss of shear resistance.   

As already mentioned, progressive failure – when developing in the triggering phase – is 

normally not a slow process at all. Again, this is ‘actually’ what this type of failure is about. 

 

There are numerous examples of lateral slide progression in Scandinavia – e.g. the 

landslides at Göta (1957), Rissa (1978), Vagnhärad, (2000), Småröd (2007) (width ≈ 500 m), 

etc. As soon as the width of a landslide occurred exceeds its length in the triggering phase, 



12 

 

the mentioned conditions, favouring lateral slide progression, are likely to have been 

important factors in the slide development. 

 

Conclusion: Lateral slide progression should always be considered in situations, where the  

potential width of a landslide exceeds its likely extension in the triggering phase (i.e. 

normally about 50 to 100 m). Factors promoting laterally progressive sliding are 

inhomogeneous and highly sensitive layers in the soil structure.  

 

In the North Spur, landslide risk is primarily related to high porosity and low clay content in 

the Stratified Drift, as well as in specific porous layers in the Lower Clay formation. 

Confer Ref. [13], Section 2. 

 

  

Issue No 7: Over-consolidated clays versus porous soils 
 

In the previous reports, (and in Issue No 2 above), the undersigned has stressed the fact that 

the sensitivity of highly over-consolidated clays in Eastern Canada, and that of the markedly 

porous soils typical of the Churchill River Valley, are not related to the same type of basic 

grain structure and evolutionary conditions. The properties of these soils have very little i9n 

common 

 

Sedimentary history, porosity, grain size structure, grain shape, clay content, chemistry of 

soil constituents, and the degree and nature of over-consolidation radically influence the 

stress/strain (deformation) behaviour of soils – thus also importantly affecting the failure 

processes and the different modes of slope failure. 

  

In fact, this is what the problems related to the stability assessments regarding of the North 

Spur dam containment is mainly about. In the previous reports, the author has repeatedly 

emphasized the crucial effect of the basic relationship between high in-situ porosity (n) of a 

soil layer and the so called critical porosity (ncrit) of the same type of soil.   

This relation constitutes a condition, the decisive importance of which has, among others, 

been very clearly described by Terzaghi-Peck, e.g. in Reference [3]. (Confer also Ref. [16]).  

 

 

Issue No 8: About propensity to soil liquefaction – drainage reliability of 

sparse spread of finger drains – if any such drains at all near the COW.  
 

As already stated, the conditions triggering progressive slope failure are not long time-

extended processes. The rate of strain (and deformation) at the end of the triggering phase 

(preceding the virtually dynamic third phase) is normally high. This implies that the excess 

pore-water pressures, liable to build-up at this stage, in porous and sensitive soils, may not 

dissipate fast enough through a few inter-distant finger drains – i.e. provided there are any 

such drains at all in the Stratified Drift and in Lower Clay layers just East of the COW.    
The problem is of course aggravated the greater the difference (n- ncrit) happens to be in 

porous soil layers.     

As previously emphasized, there exist crucially decisive conditions, affecting the North Spur 

stability, also in the Lower Clay sedimentary structure, and that irrespective of whether 

downhill (forward) or laterally progressive failures are anticipated. 
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Issue No 9: Remedial measures: 
 

The risk of progressive failure development may be counteracted by deep drains extending 

through the Stratified Drift and deep down into the Lower Clay formation, and in which the  

piezometric levels are controlled by deep pump wells operating all the time during the period 

of impoundment.  

The extension of the area with closely spaced deep drains should be based on progressive 

failure analysis – most likely at least some 40 to 50 m East of the COW.  

 

Hence, a vital issue in this context is:  

Are sparse finger drains (if any in this part of the soil mass) a satisfactorily reliable measure 

for the prevention of progressive failure development being triggered just East of the 

COW?? 

 

This issue must be proven beyond any shadow of a doubt. 

 

 

Mölndal 2017-10-23    
 

 

Stig Bernander 
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               Section 5.8,   A proposal for the realistic testing of the porosity of soils in the  

                                        Stratified drift.                                                                         
               Section 6.3,   …possible Failure in Lower Clay Formation should be considered. 
               Section 6.5,   About Finger Drains. 
               Section 6.6,   About investigation of in situ porosity conditions in soil layers. 

 

[16]   Letter to Grand Riverkeeper Labrador Inc. (2016-11-16) concerning North Spur 

stability. Among other about the sensitivity of East Canadian clays vs that of soils in   

the North Spur and in the Churchill River Valley.   

          (A copy of this letter was sent directly by Bernander to the NFL Minister’s Office  

          Secretary, Miss Fanny Hoddinott at the Ministry of Environment.) 
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